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There is a growing prevalence of AI tools in the arena of higher 7 

education. The willingness and intentions of higher educators play a 8 

significant role in successfully incorporating these tools. This 9 

investigation extends the Technology Acceptance Model (TAM) to 10 

explore the multifaceted interplay among determinants shaping higher 11 

educators' intentions for employing AI tools in their professional and 12 

pedagogical domains. The data was gathered from 400 respondents, 13 

comprising educators holding positions ranging from assistant 14 

professors to professors within Indian HEIs. The investigation validated 15 

the TAM model's applicability using covariance-based systematic 16 

equation modeling (CB-SEM) and supported nine of the fifteen 17 

proposed hypotheses. Further, the investigation underscores the 18 

significance of fostering higher educators' competency and confidence 19 

in AI tools through focused training and support services. Additionally, 20 

it highlights the role of their inherent openness to be proficient in such 21 

novel technological advancements. This investigation advances the 22 

prevailing AI-strengthened pedagogical sphere of education. 23 
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Introduction  30 

Artificial Intelligence (AI) draws great global curiosity and attention since it profoundly brings 31 

astonishing features to our daily lives. The most recent and widely accepted definition of AI, as 32 

found in related literature, describes it as the ability of a computer or computer-controlled machine 33 

to comprehend, reason, and behave in a manner indistinguishable from human behaviour 34 

(Coombs et al., 2020; Enholm et al., 2022). With increased access to information and 35 

computational power, AI has become a transformative technology, fuelling innovation and 36 

revolutionising various sectors, from medical assistance in hospitals to robots in the automotive 37 

sector (Duan et al., 2019; Gursoy et al., 2019).  38 

In recent decades, researchers have been exploring different ways of integrating AI technologies 39 

into the education environment (Cumming & Mcdougall, 2000; Lee & Yeo, 2022; K. Zhang & 40 

Aslan, 2021). This exploration has been reinforced by substantial investment, with global 41 

spending on AI-driven education reaching $1.047 trillion between 2008 and 2017 (Mou, 2019). 42 

The prominent investment reflects the expanding utilisation of AI technologies across educational 43 

domains, notably personalised academic support, constructive feedback, automatic assessment 44 

and grading systems, intelligent tutoring systems, and mental health support tools (Alqahtani et 45 

al., 2023; Martínez-Comesaña et al., 2023; Shvetcov et al., 2023; Spitzer & Moeller, 2023).  46 

The latest advancements in educational AI, highlighted in the 2023 EDUCAUSE Horizon Report, 47 

spotlight the transformative impact of Generative AI (GenAI) and Predictive AI in higher education 48 

(Pelletier et al., 2023). Gen AI tools leverage cutting-edge algorithms to learn patterns and 49 

generate novel content, including texts, images, sounds, videos, and code, enhancing 50 

personalisation (Chan & Hu, 2023). For example, with ChatGPT, a form of GenAI and an AI 51 

chatbot specialised in generating text-to-text human-like conversations, students can accomplish 52 

high-quality tasks such as writing a 1000-word essay (Atlas, 2023), solving math problems, and 53 

composing music, all in under 30 seconds (Chiu, 2023). Another noteworthy GenAI tool, DALL-54 

E, functions similarly to ChatGPT and produces digital photos as output (Open AI, 2023). 55 

Additionally, GenAI extends beyond student support, aiding in research tasks by generating and 56 

compiling knowledge, summarising a large quantity of text information, analysing data, and 57 

crafting manuscripts (Berg, 2023). In contrast, Predictive AI tools analyse learner data to identify 58 

at-risk students, devise personalised learning pathways for enhanced efficacy, and optimise the 59 

instructional design (Mozer et al., 2019; Nabizadeh et al., 2020; Ouyang et al., 2023; Taheri et 60 

al., 2021).  61 

In the ever-evolving landscape of higher education, it is indispensable for educators to constantly 62 

keep up with novel technological integrations, which has become paramount (Mazman Akar, 63 

2019).  As AI tools are gaining prominence as a means of transforming this landscape (Crompton 64 

& Burke, 2023), understanding the motivations and intentions of higher educators in their adoption 65 

becomes crucial in navigating the challenges posed by the swiftly changing educational paradigm 66 

(Bearman et al., 2023). The rapid pace of technological change presents educators with 67 

opportunities and challenges as they strive to harness the potential of AI tools to optimise 68 

teaching, learning, and administrative processes. However, the complexity and diversity of AI 69 

tools require educators to navigate new terrain, necessitating a deep understanding of their 70 

motivations and intentions in adopting these technologies.  71 



Moreover, gaining insights into higher educators' readiness supports the seamless integration of 72 

AI, directly impacting educational outcomes and nurturing learners for a technologically driven 73 

future. Within this realm, the Technology Acceptance Model (TAM) has long been a valuable 74 

framework (Dasgupta et al., 2002), focusing on factors such as perceived usefulness and 75 

perceived ease of use, particularly in the context of technology integration in teaching and learning 76 

(Salloum et al., 2019; Taha et al., 2022). However, AI tools' complex and diversified nature 77 

presents unique challenges and considerations that can only be partially captured with the 78 

traditional Technology Acceptance Model (TAM) framework within higher education settings. 79 

Unlike conventional technologies, AI tools often involve sophisticated algorithms and data-driven 80 

functionalities that require educators to possess specialised knowledge and skills for effective 81 

utilisation. Furthermore, AI tools offer a wide range of functionalities, from personalised learning 82 

experiences to data-driven insights and task automation, each with its own set of implications for 83 

teaching and learning in higher education settings (Celik et al., 2022; Maghsudi et al., 2021; Sghir 84 

et al., 2023). Therefore, expanding the TAM framework to incorporate five additional constructs, 85 

Personal Innovativeness (PI), AI Self Efficacy (AISE), Professional Excellence (PE), Perceived 86 

Privacy Concern (PPC), and Perceived Enjoyment (PE), is essential to comprehensively address 87 

the multifaceted nature of AI tool adoption in higher education. However, the successful 88 

incorporation of these tools depends on the willingness and intentions of higher educators to 89 

embrace this transformative technology, thereby informing the development of tailored strategies 90 

and interventions to support their effective integration into educational practice. The investigation 91 

is navigated through the subsequent research questions. 92 

Research questions: 93 

• What factors influence higher educators' intentions to employ AI tools? 94 

• How do these factors influence higher educators' intentions to employ AI tools 95 

• How do higher educators perceive AI tools' usefulness and ease of use in their 96 

professional practices? 97 

Despite the growing popularity of AI tools, there is a noticeable gap in the literature regarding 98 

higher educators' intentions to employ AI tools (Kim & Kim, 2022; Tang et al., 2023; Wang et al., 99 

2023). Understanding their perspectives is significant for educational technology developers, 100 

institutions, and policymakers in designing effective strategies that facilitate AI tool adoption. By 101 

expanding TAM, this investigation not only advances theory but also holds implications for 102 

educational stakeholders seeking to utilise the benefits of AI in higher education. Additionally, the 103 

investigation endeavours to offer critical insights that could guide the productive integration of AI 104 

tools in higher education by thoroughly investigating the various aspects that impact higher 105 

educators' intentions in this regard. Though the study is being conducted within the framework of 106 

the Indian higher education system, the determinants influencing educators' intentions to employ 107 

AI tools are likely to have broader relevance across diverse educational settings globally. The 108 

Indian higher education system shares similarities with its international counterparts in its focus 109 

on providing quality, accessible education, fostering research and innovation, and adapting to 110 

technological advancements (Saini et al., 2023). Additionally, being a diverse country, the 111 

challenges and opportunities associated with AI integration in education are not unique to India 112 

but resonate with educational contexts worldwide (Agarwal & Vij, 2024). Therefore, while the 113 

study findings are rooted in the Indian higher education system, they can be generalised to inform 114 



discussions and initiatives to promote AI adoption and utilisation in various educational contexts 115 

internationally.  116 

Literature Review and Hypotheses Development 117 

In recent years, integrating AI-powered tools into higher education has substantially transformed 118 

instructional strategies and learning processes (Cardona et al., 2023; Zawacki-Richter et al., 119 

2019). This integration spans various realms, such as student admissions, personalised learning, 120 

and assessment (Memarian & Doleck, 2023). For instructional content optimisation and automatic 121 

recommendation systems, multiple AI algorithms have been utilised within higher education, 122 

including Sequential Pattern Mining (SPM) (Romero et al., 2013), Genetic Algorithms (GA), 123 

Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO) (Christudas et al., 2018). 124 

For instance, Moseley and Mead (2008) successfully employed a machine-learning decision tree 125 

model to forecast enrollment declines in nursing institutions. Moreover, AI technology has been 126 

leveraged in specific educational applications, such as virtual reality (VR) for history learning, 127 

designed by Ijaz et al. (2017), significantly improving learners’ engagement. Zhao et al. (2019) 128 

found that the practical implementation of AI-based instruction benefited learners' academic 129 

achievements. Additionally, Xiao et al. (2022) proposed an AI-assisted Multi-Objective Decision-130 

Making model (AI-MODM) to forecast the performance of educators in higher education systems, 131 

achieving an impressive precision ratio of 97.9%. These significant AI-powered technological 132 

shifts have raised important questions about educators' intentions regarding incorporating AI tools 133 

into the pedagogical landscape.  134 

Regarding technology adoption, the Technology Acceptance Model (TAM) is a widely recognised 135 

theoretical framework, offering a solid theoretical basis for comprehending users' acceptance of 136 

technology in an educational context (Granić & Marangunić, 2019). Rooted in the foundations of 137 

the Theory of Reasoned Action (Fishbein, 1980) and the Theory of Planned Behavior (Ajzen, 138 

1991), the TAM examines the factors influencing people's intentions to adopt technology. The 139 

TAM is beneficial when outlining how educators employ various technologies in different contexts 140 

(Dele-Ajayi et al., 2017). As further criticism of TAM had contributed to the model's development 141 

in subsequent investigations, more external variables were added to it, including the TAM2 142 

(Venkatesh & Davis, 2000), the Unified Theory of Acceptance and Use of Technology – UTAUT 143 

(Venkatesh et al., 2003) and the TAM3 (Venkatesh & Bala, 2008). Despite the spectrum of TAM 144 

versions, the key variables- perceived usefulness (PU) and perceived ease of use (PEOU) were 145 

found to be the prominent determinants affecting the uptake of technology (Davis et al., 1989; 146 

Zhang et al., 2023). 147 

Multiple investigations involving educators have been carried out in recent years by utilising 148 

various versions of TAM to explore the factors influencing their perceptions of different 149 

technologies across diverse contexts (Dele-Ajayi et al., 2019; Hong et al., 2021; Scherer & Teo, 150 

2019; Teo, 2019). For instance, Al Darayseh (2023) utilised the TAM framework to explore 151 

science educators' attitudes toward AI application use in education, revealing teachers' solid 152 

acceptance of AI. The study found no significant differences in educators' intentions to employ AI 153 

in science education based on gender, teaching experience, or qualifications. Furthermore, other 154 

studies have also showcased the applicability of TAM in determining educators' intentions to 155 



deploy chatbots, augmented reality applications, and mobile technology (Asiri & El, 2022; 156 

Chocarro et al., 2023; Walker et al., 2020).  157 

TAM enables researchers to incorporate potential external constructs influencing the adoption of 158 

a particular technology, as external are identified to determine both PU and PEOU (Al-Adwan et 159 

al., 2023; Moon & Kim, 2001; Zhang et al., 2008). In this investigation, we extended TAM by 160 

including five additional external constructs: Personal Innovativeness (PI), AI Self Efficacy (AISE), 161 

Professional Excellence (WE), Perceived Privacy Concern (PPC), and Perceived Enjoyment 162 

(PE), which are anticipated to profoundly impact Higher educator's Behavioural Intention (BI) to 163 

employ AI tools into their pedagogical landscape.  164 

Personal Innovativeness (PI) 165 

In general innovation diffusion studies, it has long been acknowledged that highly innovative 166 

people actively seek new information and tend to be more positive towards accepting it (Dibra, 167 

2015; Lu et al., 2005). PI, as recognised by Agarwal and Prasad (1998), signifies an individual’s 168 

willingness to experiment with information or technology. Given the inadequate state of AI training, 169 

educators frequently rely on their initiative and research-driven inventive traits to explore and 170 

integrate new technologies (Hsiao & Chang, 2023; Nguyen et al., 2021). It is widely recognised 171 

that educators' unique innovativeness has a considerable impact on how they explore, embrace, 172 

and integrate new technology and instructional strategies (Frei-Landau et al., 2022; Uzumcu & 173 

Acilmis, 2023). Previous studies have established a notable correlation between PI and BI, PU, 174 

PEOU and Self Efficacy (Chen, 2022; Joo et al., 2014). Therefore, incorporating PI as a construct 175 

in this study provides valuable insight into educators' readiness to adopt AI tools and their 176 

potential impact on AI acceptance and utilisation. Consequently, the subsequent hypotheses are 177 

proposed: 178 

H1: Higher Educators' PI significantly influences their PU in employing AI tools. 179 

H2: Higher Educators' PI significantly influences their PEOU in employing AI tools. 180 

H3: Higher Educators' PI significantly influences their BI in employing AI tools. 181 

H4: Higher Educators' PI significantly influences their AISE in employing AI tools. 182 

AI Self Efficacy (AISE) 183 

Self-efficacy is often defined as one's perception of their level of competence (Bandura, 1977). AI 184 

Self-Efficacy (AISE) extends the concept of self-efficacy to the realm of AI technologies, 185 

representing individuals' judgments of their ability to effectively utilise AI tools (Wang et al., 2023). 186 

Given the significant impact of self-efficacy on constructs such as Perceived Usefulness (PU) and 187 

Perceived Ease of Use (PEOU) in previous studies (Alharbi & Drew, 2019), the inclusion of AISE 188 

is crucial for understanding educators' readiness to adopt AI tools.  Bandura and Locke (2003) 189 

assert that self-efficacy is positively correlated with personal behavioural actions and results, such 190 

as overcoming obstacles, striving for success, and eventually excelling in different domains of 191 

life. Considering the potential benefits of AI for educators in both learning and teaching, AISE 192 

plays a vital role in shaping educators' attitudes and behaviours towards adopting AI tools. 193 

Consequently, the subsequent hypotheses are proposed: 194 

H5: Higher Educators' AISE significantly influences their PU in employing AI tools. 195 



H6: Higher Educators' AISE significantly influences their PEOU in employing AI tools. 196 

H7: Higher Educators' AISE significantly influences their PEx in employing AI tools. 197 

Professional Excellence (PEx) 198 

To achieve professional excellence in the context of adopting AI in academia, educators must 199 

possess the requisite knowledge, skills, and technology efficacy (Azad, 2017). AI can catalyse 200 

educators' professional excellence by offering tailored instructional resources to learners, 201 

automating administrative tasks, and supplying data-driven insights for optimising outcomes 202 

(Ghamrawi et al., 2023). Introducing the new construct, PE emphasises the importance of 203 

educators' competency and technology efficacy in effectively adopting and utilising AI tools in 204 

academic settings. Consequently, the subsequent hypotheses are proposed: 205 

H8: Higher Educators' PEx significantly influences their BI in employing AI tools. 206 

Perceived Privacy Concern (PPC) 207 

In general, privacy concerns include worries about losing one's privacy and the necessity for 208 

protection against the misuse of personal information (Smith et al., 1996). Dinev and Hart (2005) 209 

found a negative impact of privacy concerns on the intention to use internet-based technology, 210 

indicating their significant influence on technology acceptance. This influence extends to AI 211 

technologies, where privacy concerns have been shown to affect perceived usefulness and 212 

acceptance (Dhagarra et al., 2020; Komatsu, 2013; Schomakers et al., 2022). AI's capability to 213 

collect, analyse, and retain vast amounts of personal data raises substantial privacy concerns, 214 

posing a critical obstacle to adoption (Walsh, 2023). Therefore, incorporating PPC as a construct 215 

in this study provides valuable insights into educators' perceptions and concerns regarding the 216 

privacy implications of AI adoption, which are essential considerations in their decision-making 217 

process. Consequently, the subsequent hypotheses are proposed: 218 

H9: Higher Educators' PPC significantly influences their PU in employing AI tools. 219 

H10: Higher Educators' PPC significantly influences their BI in employing AI tools. 220 

Perceived Usefulness (PU) 221 

The extent to which people believe using a particular technology enhances their performance is 222 

termed PU (Davis, 1989). This study outlines PU as the extent to which higher 223 

educators anticipate that deploying AI tools will enhance their professional and pedagogical 224 

expertise. Previous studies indicate that PU is the strongest predictor of the intention to use a 225 

potential technology (Rafique et al., 2020) in education (Adwan et al., 2018; Sprenger & 226 

Schwaninger, 2021). Consequently, the subsequent hypotheses are proposed: 227 

H11: Higher Educators' PU significantly influences their BI in employing AI tools 228 

Perceived Ease of Use (PEOU) 229 

PEOU is the extent to which people perceive the technology as effortless to use, and it is 230 

supposed to have a beneficial impact on people's intentions about the technology's usefulness 231 

(Davis, 1989; Venkatesh & Davis, 2000). PEOU and PU are critical indicators of future technology 232 

adoption in various sectors, including education (Dhingra & Mudgal, 2019). This indicates that 233 

when educators perceive that a particular technology is beneficial in making teaching and learning 234 



more accessible and practical, they are more inclined to adopt it (Teo, 2011). Previous studies 235 

have also proved the significant influence of PEOU on PU and BI in the acceptance of technology 236 

in education (Chang et al., 2012; Rienties et al., 2016; Sánchez-Mena et al., 2017). Furthermore, 237 

when technology is easy and convenient, individuals seem to find it more enjoyable. Previous 238 

studies have found a significant correlation between PEOU and perceived enjoyment (Akdim et 239 

al., 2022; Davis et al., 1992; Wang et al., 2022). Consequently, the subsequent hypotheses are 240 

proposed: 241 

H12: Higher Educators' PEOU significantly influences their PU in employing AI tools. 242 

H13: Higher Educators' PEOU significantly influences their PE in employing AI tools. 243 

H14: Higher Educators' PEOU significantly influences their BI in employing AI tools. 244 

Perceived Enjoyment (PE) 245 

PE is integral in understanding individuals' intentions towards technology adoption, as it measures 246 

the degree of pleasure and fun an individual receives from a specific technology (Venkatesh, 247 

2000). Research has shown that PE significantly influences individuals' technology adoption 248 

intentions, particularly regarding hedonic systems that offer pleasure or joy (Koufaris, 2002; 249 

Venkatesh et al., 2002). In the context of AI adoption in higher education, educators who perceive 250 

AI tools as enjoyable and capable of delivering thrilling outcomes are more inclined to dedicate 251 

effort towards their adoption (Bagdi & Bulsara, 2023; Humida et al., 2022; TURAN et al., 2022). 252 

Consequently, the subsequent hypotheses are proposed: 253 

H15: Higher Educators' PE significantly influences their BI in employing AI tools. 254 

The proposed research model for the investigation is displayed in Figure 1. 255 

 256 

Figure 1 257 

Proposed Research Model 258 

 259 
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 269 



Methodology 270 

Research Approach 271 

This investigation employed a quantitative research approach using a cross-sectional survey 272 

design. It selected covariance-based structural equation modeling (CB-SEM) to evaluate 273 

interconnected unobserved relationships among the study’s constructs (Dash & Paul, 2021). This 274 

method was fitting because it assessed untested and tested constructs within the well-established 275 

TAM theoretical framework (Fussell & Truong, 2022).  276 

Data Collection and Sampling 277 

Following expert validation, refining phrases, and eliminating non-matching items, the final survey 278 

questionnaire was distributed during the last quarter of 2023 through in-person interactions and 279 

online via a Google form. Respondents were provided with detailed information about the purpose 280 

and objectives of the research and the procedures involved through a consent letter included at 281 

the beginning of the survey questionnaire. This ensured their voluntary participation and 282 

understanding of the research aims and procedures. The respondents comprised educators 283 

holding positions ranging from assistant professors to professors within Indian higher educational 284 

institutions. The data collection process followed strict ethical guidelines established by the 285 

Institutional Human Ethics Committee (IHEC), prioritising minimal collection of personal data 286 

beyond essential demographic information (Table 1). 287 

Table 1 288 

Respondents' profile summary (n=400) 289 

 Category n % 

Gender 

 

 

Female 115 28.75 

Male 285 71.25 

Academic Rank Assistant Professor 220 55 

Associate Professor 126 31.5 

Professor 54 13.5 

Stream of Specialization STEM 156 39 

Arts/Humanities 72 18 

Social Science 110 27.5 

Management/Commerce 62 15.5 

 

 

 

 

 

 

 

 



Experience with AI Tools Limited 41 10.25 

Moderate 287 71.75 

Advanced 72 18 

Frequency of employing AI tools in 
professional landscape 

Not often 38 9.5 

Occasionally 295 73.75 

Regularly 67 16.75 

Always - - 

The study's sample size was determined using Daniel Soper’s (2023) online sample size 290 

calculator, drawing from Cohen's (1988) and Westland's (2010) methodologies. The a priori 291 

sample method for structural equation modeling was employed to establish the minimum required 292 

sample size. Considering an estimated effect size of .3, a desired statistical power level of .8, 8 293 

exogenous constructs, and 28 items at a .05 significance level, a minimum sample size of 177 294 

was recommended. The study gathered data from 400 respondents employing the technique of 295 

convenience sampling, surpassing the required sample threshold. Hence, for evaluating a 296 

proposed theoretical model, a non-probability sample is often found to be appropriate (Hulland et 297 

al., 2018). 298 

Survey Instrument 299 

The survey instrument comprised an initial section presenting the study's purpose and seeking 300 

consent, followed by the first section dedicated to gathering demographic data. The next part 301 

contained 28 measurement items to analyse the model's factors. These constructs were 302 

evaluated through three to four indicator variables, following content validation by experts (Table 303 

2), utilising a 5-point Likert scale extending from "strongly disagree" (1) to "strongly agree" (5). 304 

Table 2 305 

Research Constructs and Items 306 

Constructs Items Questions 

Professional Excellence 

PEx1 
AI tools are highly beneficial for enhancing my work 

and productivity 

PEx2 
AI tools enable me to achieve high professional 

proficiency. 

PEx3 AI tools can potentially benefit the quality of my work. 

PEx4 
By utilising AI tools, I can effectively and precisely 

complete my tasks. 



 

AI Self Efficacy 

 

AISE1 

 

I have the resources and support to employ AI tools 

effectively. 

AISE2 
I have the fundamental understanding and expertise 

to employ AI tools efficiently. 

AISE3 
AI tools seamlessly integrate with the other 

technologies I employ 

Personal 

Innovativeness 

PI1 
I enjoy consistently experimenting with new AI 

Technologies and Tools 

PI2 
When I hear about a new AI tool, I try and improve it 

differently. 

PI3 
I invest time and effort to keep myself updated 

with developments of the latest AI tools. 

PI4 
I discuss and share ideas with my colleagues about 

the possibilities of AI Tools. 

Perceived Privacy 

Concern 

PPC1 
I have worries about the potential misuse of my data 

when using AI tools. 

PPC2 
I have concerns about my digital privacy while using 

AI tools. 

PPC3 
I am sceptical about sharing my sensitive information 

with AI-powered tools. 

Perceived Usefulness 

PU1 
Using AI tools significantly enhances my productivity 

and work efficiency. 

PU2 
AI tools can offer helpful knowledge and suggestions 

for the tasks I undertake. 

PU3 
I find AI tools to be an excellent asset in achieving my 

goals and objectives. 

PU4 
AI tools enable me to complete tasks more quickly 

and effectively. 

 

 

 

 

 

 



 

 

 

Perceived Ease of Use 

PEOU1 Learning to use AI tools has been effortless for me 

PEOU2 
I have access to the necessary resources for using AI 

tools. 

PEOU3 
I have confidence in my skills and expertise to use AI 

tools efficiently. 

PEOU4 
AI tools are relatively easy to use and do not require 

much effort. 

Perceived Enjoyment 

PE1 
The experience of employing AI technologies never 

fails to captivate me. 

PE2 
Using AI Tools adds an element of excitement to my 

profession. 

PE3 
Accomplishing my tasks with the assistance of AI 

Tools is very satisfying. 

Behavioural Intention 

BI1 
I plan on incorporating AI tools into my daily tasks 

more often. 

BI2 I am going to increase the usage of AI tools. 

BI3 I will be utilising AI tools in the future. 

Data Analysis 307 

The present investigation employed a two-step process (Anderson & Gerbing, 1988) to verify the 308 

proposed model framework. The model's reliability, validity, and fit are assessed in the first stage, 309 

followed by testing the hypotheses in the second stage using IBM SPSS 25 and Amos 22.  310 

Results 311 

Measurement Model – Reliability, Validity, and Model Fit Analysis 312 

The data was initially examined through IBM SPSS Statistics 25 for missing information, 313 

uncommitted replies, and outliers. Following this, the normality assumptions of the data were 314 

confirmed using the Skewness and Kurtosis measures before continuing to the further estimates 315 

analysis of the measurement model (Kline, 2016) displayed in Figure 2. The measured skewness 316 

and kurtosis values were between the desirable ranges, ± 3 and ± 10 (Brown, 2006).  317 

The measures of Cronbach's alpha (α) and Construct Reliability (CR) were used to assess the 318 

construct’s reliability. The values of both the measures for each construct were found to be above 319 

the pre-determined limit of 0.7 (Hair et al., 2009; Lance et al., 2006), given in Table 3. Further, 320 

convergent and divergent validity measures were used to evaluate the validity of the constructs. 321 

Standardised factor loadings and Average Variance Extracted (AVE) values were measured to 322 



evaluate the constructs’ convergent validity (Table 3). As Hair et al. (2009) outlined, the 323 

standardised factor loadings exceeded the pre-determined limit of 0.50. Similarly, as Fornell and 324 

Larcker (1981) outlined, the AVE measures exceeded the pre-determined limit of 0.5, ranging 325 

from 0.650 for PPC to 0.542 for PEOU.  326 

Figure 2 327 

The Measurement Model  328 

 329 
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 356 

Table 3 357 



Measurement Model – Constructs’ Reliability and Convergent Validity 358 

Constructs Items 

Standardised 

Factor  

Loadings 

Professional Excellence (PEx) 

(α= .845, CR=.846, AVE=0.578) 

 

PEx1 0.724 

PEx2 0.817 

PEx3 0.748 

PEx4 0.753 

AI Self Efficacy (AISE) 

(α= .789, CR=.794, AVE=0.563) 

 

AISE1 0.755 

AISE2 0.700 

AISE3 0.793 

Personal Innovativeness (PI) 

(α= .821, CR=.825, AVE=0.543) 

 

PI1 0.695 

PI2 0.669 

PI3 0.830 

PI4 0.744 

Perceived Privacy Concerns (PPC) 

(α= .841, CR=.845, AVE=0.650) 

 

PPC1 0.887 

PPC2 0.831 

PPC3 0.689 

Perceived Usefulness (PU) 

(α= .848, CR=.854, AVE=0.595) 

 

PU1 0.835 

PU2 0.791 

PU3 0.739 

PU4 0.716 

Perceived Ease of Use (PEOU) 

(α= .823, CR=.825, AVE=0.542) 

 

PEOU1 0.682 

PEOU2 0.793 

PEOU3 0.736 



 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

The construct’s discriminant validity was evaluated using the Fornell and Larcker criterion (Fornell 369 

& Larcker, 1981) and the Heterotrait-Monotrait (HTMT) ratio (Kuppelwieser et al., 2019). As 370 

given in Table 4, all of the constructs adequately fulfilled the Fornell and Larcker criterion since 371 

each construct’s square root of the AVE is higher than its correlation with other constructs. 372 

Additionally, as given in Table 5, all of the constructs confirmed the discriminant validity since the 373 

HTMT ratios were below the pre-determined limit of 0.85, as outlined by Henseler et al.  (2015).  374 

Table 4 375 

Measurement Model - Discriminant Validity: Fornell - Larcker Criterion 376 

Construct PEx AISE PI PPC PU PEOU PE BI 

PEx 0.760        

AISE 0.207 0.750       

PI 0.351 0.283 0.736      

PPC 0.110 0.003 0.033 0.806     

PU 0.175 0.198 0.035 -0.090 0.771    

PEOU 0.387 0.402 0.303 0.016 0.137 0.736   

PE 0.272 0.212 0.494 0.097 0.066 0.317 0.753  

BI 0.381 0.038 0.247 -0.022 0.177 0.215 0.443 0.783 

Note. Bold digits represent the square root of AVE 377 

 378 

 379 

PEOU4 0.731 

Perceived Enjoyment (PE) 

(α= .791, CR=.796, AVE=0.567) 

 

PE1 0.661 

PE2 0.791 

PE3 0.799 

Behavioural Intention (BI) 

(α= .786, CR=.820, AVE=0.614) 

 

BI1 0.536 

BI2 0.874 

BI3 0.889 



Table 5 380 

Measurement Model - Discriminant Validity: Heterotrait - Monotrait Ratio 381 

Construct PEx AISE PI PPC PU PEOU PE 

AISE 0.207       

PI 0.361 0.309      

PPC 0.088 0.037 0.032     

PU 0.185 0.208 0.059 0.041    

PEOU 0.390 0.409 0.330 0.055 0.153   

PE 0.264 0.218 0.511 0.074 0.273 0.312  

BI 0.381 0.023 0.288 0.189 0.385 0.210 0.431 

In summary, the above-reported findings establish the constructs’ reliability and validity. Further, 382 

the convergent validity results confirm the internal consistency of the indicators in measuring their 383 

respective constructs (Bagozzi, 1981), and discriminant validity results ensure that each construct 384 

in the study distinctly differs from other constructs (Ab Hamid et al., 2017). 385 

The following fit indices: χ2 divided by degree of freedom (CMIN/DF), root mean square error of 386 

approximation (RMSEA), comparative fit index (CFI), and parsimonious normed fit index (PNFI) 387 

were employed to evaluate the model fit using Amos. Further, the above-fit indices were 388 

categorised into three distinct groups as per the Hooper et al. (2008) classifications: absolute fit 389 

(CMIN/DF, RMSEA), incremental fit (CFI), and parsimonious fit (PNFI). The results reported in 390 

Table 6 confirm the model's fitness, implying that the exogenous constructs included in the 391 

proposed model could account for their influence on the endogenous constructs in 392 

determining higher educators' intentions for successfully integrating AI tools. 393 

Table 6 394 

Model’s Fit Indices 395 

Fit indices Model fit 

indices 

Recommended values  Sources 

Absolute Fit Indices 

CMIN/DF 

RMSEA 

 

2.104 

0.051 

 

≤ 3 

≤ .05 

 

 

(Cangur & Ercan, 

2015; Hu & Bentler, 

1999; Lin & Yu, 

2023) 

Incremental Fit Index 

CFI 

 

0.931 

 

≥ .90 



Parsimony Fit Index 

PNFI 

 

0.746 

 

≥ .50 

Structural Model – Analysis and Hypothesis Testing  396 

The structural model displayed in Figure 3 was further evaluated before proceeding with the 397 

hypothesis testing. Initially, by using the following fit indices: CMIN/DF = 2.151, RMSEA= 0.049, 398 

CFI=0.956, and PNFI = 0.753, the structural model was found to have an appropriate fit as per 399 

the recommended values from the sources given in Table 6. 400 

In the subsequent step, the hypothesised structural relationships were tested using the 401 

standardised path coefficients (β) (Jang et al., 2021; Mueller & Hancock, 2018), as reported in 402 

Table 7. Nine of the fifteen hypotheses tested were supported and had standardised path 403 

coefficients ranging from 0.159 to 0.386. The hypotheses H2, H4, H6, H7, H8, H13 and H15 were 404 

supported at 0.001 significance level, and H5 and H11 were supported at 0.01 significance level. 405 

The path within PU to BI had the lowest standardised path coefficient (β = 0.159), whereas the 406 

path within PE to BI had the highest significant path coefficient (β = 0.386). Moreover, the following 407 

hypotheses, H1, H3, H9, H10, H12 and H14, were not supported since they were not significant 408 

either at 0.001 or 0.01 levels of significance.  409 

Figure 3 410 

The Structural Model  411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 



Table 7 428 

Results of Hypothesis Testing  429 

Hypothesis β 95% CI 
p-

Values 
Decision 

H1: PI → PU 0.045 (-.201 - .108) 0.458 Not Supported 

H2: PI → PEOU 0.210 (.069 - .337) *** Supported 

H3: PI  →  BI 0.014 (-.140 - .118) 0.797 Not Supported 

H4: PI  →  AISE 0.298 (.179 - .434) *** Supported 

H5: AISE  → PU 0.194 (.053 - .336) 0.004** Supported 

H6: AISE → PEOU 0.362 (.217 - .512) *** Supported 

H7: AISE → PEx 0.250 (.105 - .388) *** Supported 

H8: PEx  → BI 0.313 (.199 - .411) *** Supported 

H9: PPC → PU -0.010 (-.114 - .097) 0.856 Not Supported 

H10: PPC → BI -0.084 (-.188 - .007) 0.090 Not Supported 

H11: PU →  BI 0.159 (.072 - .279) 0.002** Supported 

H12: PEOU → PU 0.070 (-.111 - .268) 0.292 Not Supported 

H13: PEOU → PE 0.247 (.088 - .404) *** Supported 

H14: PEOU → BI 0.042 (-.096 - .184) 0.459 Not Supported 

H15: PE → BI 0.386 (.251 - .506) *** Supported 

 430 

Discussion 431 

The present investigation examines multiple determinants influencing higher educators' intentions 432 

to employ AI tools in their pedagogical and professional domains. Expanding upon TAM, this 433 

study performed CB-SEM analysis with fifteen hypotheses to validate the proposed 434 

pertinent determinants in the model.  The analysis showed a significant influence of PI on higher 435 

educators' PEOU and AISE in employing AI tools. This finding implies that educators' attitudes 436 

and personal traits, particularly their inherent openness to new technological advancements, 437 

significantly impact their perception and self-efficacy regarding AI tools (Gökçearslan et al., 2022; 438 



Vidergor, 2023). Further, the AISE of higher educators was a significant determinant of PU, PEOU 439 

and PEx in employing AI tools. This highlights the role of competence and confidence of educators 440 

in shaping their perception of the usefulness and ease of utilising AI tools, along with enhancing 441 

their professional performance (Kulviwat et al., 2014; Sharma & Saini, 2022). Moreover, it 442 

underscores the need to foster educators' self-efficacy by providing appropriate training, support, 443 

and opportunities to develop the essential skills and confidence to employ AI tools effectively. 444 

Additionally, PEx and PE significantly affected higher educators BI in employing AI tools. Besides 445 

the practical advantages, the results emphasise the importance of enjoyable experiences with AI 446 

tools in driving educators to employ them in their professional and pedagogical domains. 447 

In line with earlier studies (Georgiou et al., 2023; Koutromanos et al., 2023), the present 448 

investigation has demonstrated the significant role of PU in determining higher educators' BI in 449 

employing AI tools. However, in contrast to other studies (Nikou & Economides, 2019; Rafique et 450 

al., 2023), PEOU had an insignificant influence on PU and BI (Utami et al., 2022). This can be 451 

explained by prioritising the practical merits of AI tools over their ease of use. This preference 452 

may also arise from higher educators' limited familiarity with AI tools, causing them to focus more 453 

on the advantages offered by this advancing technology rather than considering how user-friendly 454 

it is, especially during this early stage of development and exposure. Even though ease of use 455 

does not directly influence their choices about usefulness or intention to employ AI tools, it does 456 

play a substantial role in their overall satisfaction or enjoyment in employing them, as indicated 457 

by the notable effect of PEOU on PE. 458 

The negligible effect of both PI and PPC on PU and BI conforms with educators' preference for 459 

practical benefits in deciding their intentions to use AI tools. Additionally, educators may prioritise 460 

noticeable benefits above privacy concerns or individual innovativeness while evaluating the use 461 

of AI tools during this early exposure and advancement period. These findings underscore the 462 

need for additional studies to give further information regarding these insignificant relationships. 463 

Implications, Limitations and Direction for Future Research 464 

The present investigation has unveiled significant insights into the determinants impacting higher 465 

educators' intentions to employ AI tools, offering substantial implications. Based on the findings, 466 

prioritising faculty development initiatives becomes pivotal, focusing on enhancing higher 467 

educators' receptiveness towards current technological advancements and boosting their 468 

confidence in effectively utilising AI tools (Rott et al., 2022). Additionally, recognising the 469 

significant role of educators' competence and confidence (AISE) in shaping their perspectives on 470 

the usefulness, ease of use, and professional excellence associated with AI tools, targeted 471 

support and skill development programs should be developed both at the national and institutional 472 

level to foster educators' self-efficacy (Seufert et al., 2021). Furthermore, to address the inclination 473 

of educators to prioritise the practical benefits of AI tools over their ease of use, it is crucial to 474 

devise additional collaborative strategies that emphasise the practical advantages and 475 

effectiveness of such tools, aligning with educators' preferences and decision-making processes 476 

(Nikiforos et al., 2020; Prieto et al., 2018). Moreover, investments in refining and developing easy-477 

to-use user interfaces are essential to ensure user-friendly experiences (Meske & Bunde, 2022; 478 

Stige et al., 2023), ultimately enhancing educators' overall satisfaction with AI tools. The study 479 

also signifies the need for a national-level policy to establish and ensure robust privacy protocols 480 



and inclusivity in AI integration within the education domains (Chan, 2023; Kazim & Koshiyama, 481 

2021) despite the observed negligible impact of PPC on BI and PU. Furthermore, the research 482 

findings underscore the importance of fostering a culture of innovation and collaboration within 483 

academic institutions, encouraging the sharing of best-responsible practices and facilitating the 484 

integration of AI technologies into teaching and learning practices.  485 

Even though this investigation provides valuable information about the determinants impacting 486 

higher educators’ employment of AI tools in their professional and pedagogical domains, 487 

additional research is still needed to acknowledge the limitations and enhance the applicability of 488 

these findings. Instead of the present cross-sectional design, a longitudinal investigation can 489 

potentially be undertaken to offer a thorough understanding of the way the attitudes and intentions 490 

of higher educators change over time with AI. Furthermore, the effects of diverse mediating 491 

factors, including gender, can be explored in future investigations. Hence, the sole basis of the 492 

present investigation was the higher educators' prior experience in employing AI tools. 493 

Subsequent experimental and comparative investigations can explore the potential role of 494 

specific AI tools in higher educators' professional and pedagogical domains. Building on the 495 

significance of Professional Excellence (PEx) and Perceived Enjoyment (PE) uncovered in this 496 

study, future research should consider these constructs when examining AI tool adoption across 497 

different educational levels, including teacher education. Additionally, investigations can be made 498 

into specific AI tools' roles in educators' professional and pedagogical domains, which could 499 

provide valuable insights. Furthermore, exploring the impact of institutional contexts, such as 500 

organisational culture and leadership support, can significantly promote AI integration. By 501 

incorporating these recommendations into future research endeavours, we can deepen our 502 

understanding of AI integration in education and contribute to informed decision-making and 503 

practice in the field. 504 

Conclusion 505 

The growing prevalence of AI in education marks a paradigm shift in instructional approaches and 506 

pupil engagement (Gill et al., 2024). However, the successful integration of this groundbreaking 507 

technology heavily relies on the willingness and intentions of higher educators to embrace this 508 

transformative technology in their professional and pedagogical spheres. Expanding upon TAM, 509 

this investigation provides insightful information on the multifaceted interplay among 510 

determinants shaping higher educators' intentions for employing AI tools in their pedagogical and 511 

professional domains. The significant influence of PI on PEOU and AISE, underscored in the 512 

investigation, highlights the importance of higher educators' inherent openness to be proficient in 513 

new technological advancements. Notably, the emergence of educators' AI self-efficacy as a key 514 

determinant in influencing their perceptions of usefulness, ease of use, and professional 515 

excellence underlines the significance of fostering educators' competency and confidence in AI 516 

tools through focused training and support services. Further, the notable path from PEx and PE 517 

to BI emphasises the importance of enjoyable experiences with AI tools in driving higher 518 

educators to employ them. Additionally, the investigation found the substantial influence of PU 519 

over PEOU on the BI of higher educators in employing AI tools. Moreover, the negligible effect of 520 

both PI and PPC on PU and BI underscores the need for future studies to explore additional 521 

factors regarding these insignificant relationships. 522 



With the more technologically proficient evolving generations, Gen Z and Gen Alpha (Chan & Lee, 523 

2023; Jukic & Skojo, 2021), it has become a crucial need for higher educators to get acquainted 524 

with the upcoming technological advancements, including AI. In this context, this investigation 525 

contributes to the existing TAM literature by evaluating the model’s suitability in exploring the 526 

multifaceted interplay among determinants shaping higher educators' intentions for employing AI 527 

tools. Meanwhile, the implications of these findings reach policymakers, higher educational 528 

bodies, institutions, and policymakers, signifying the need to balance privacy concerns, practical 529 

benefits, and higher educators' perceptions to facilitate effective implementation and utilisation of 530 

AI tools in educational settings. 531 

Further, as the integration of AI in education becomes increasingly prevalent across various 532 

educational levels, including K-12, vocational training and teacher education (Akgun & Greenhow, 533 

2022; Hui, 2020; Schmidt-Crawford et al., 2023), the insights gained from this investigation can 534 

inform strategies for AI adoption and utilisation in these settings. While the study specifically 535 

focuses on higher educators' intentions to employ AI tools, the underlying determinants identified, 536 

such as perceived usefulness, ease of use, and professional excellence, may also apply to 537 

educators in other contexts. Additionally, the significance of factors like personal innovativeness 538 

and perceived enjoyment suggests broader implications for understanding technology adoption 539 

among educators across different educational levels. By considering the transferability of these 540 

findings, policymakers, educational institutions, and stakeholders can adapt strategies and 541 

interventions to effectively integrate AI tools into diverse educational contexts, ultimately 542 

enhancing teaching and learning outcomes on a broader scale. 543 
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