ASCILITE 2024

Navigating the Terrain:

Emerging Frontiers in Learning Spaces, Pedagogies, and Technologies

Enhancing Automated Peer Code Reviews in Software Engineering
Education with Context-Aware Generative Al

Pruthvi Patel
School of Computing and Information Systems, The University of Melbourne, Australia

Shannon A. Rios
Faculty of Engineering and Information Technology, The University of Melbourne, Australia

Andrew Valentine, Eduardo Oliveira
School of Computing and Information Systems, The University of Melbourne, Australia.

This study investigates the enhancement of peer code reviews in software engineering
education through the integration of Generative Artificial Intelligence (GenAl) with contextual
awareness. Previous implementations of GenAl, such as ChatGPT, lacked detailed context about
the educational content and assessment goals, limiting their effectiveness. Our work-in-progress
research addresses this gap by providing GenAl with additional static and dynamic contextual
information, including project overviews, pull-request descriptions, and comments. In a
controlled study involving 26 students from a 12-week software engineering course, we
compared the efficacy of the original GenAl system with a context-enhanced version. Results
demonstrated that the context-aware GenAl provided more accurate and useful feedback, as
perceived by the students. These findings suggest that incorporating contextual information
improves the quality of automated peer reviews, offering a promising tool for educators to
enhance student learning and engagement in code review activities.

Keywords: peer review, code review, automated code review, genAl, feedback

Introduction

Peer review has been a well-established teaching method, recognised for its diverse benefits and primary role
in offering formative feedback (Liu & Carless, 2006). Defined as a structured critical analysis by a student of
another student's work, peer review can be conducted one-on-one, in small groups, or ad-hoc. It can be
anonymous or personal, synchronous or asynchronous, and scaffolded or free form. Various classroom
implementations exist, such as forums for discussion, critical feedback on presentations, or reciprocal reviews
(Pearce et al., 2009). Peer review helps students develop 21st-century skills by applying knowledge, fostering
critical thinking, problem-solving, and decision-making abilities (Novakovich, 2016) and it also enhances social,
communication, analytical, and evaluative skills while promoting collaboration (Boud & Falchikov, 2008).
However, traditional peer review systems face several challenges, including inconsistent quality of feedback,
potential biases, and the substantial time investment required from students and instructors alike (Fatima et
al., 2018). These challenges can hinder the effectiveness of peer reviews in achieving educational goals.

Recently, generative Al (genAl) has emerged as a possible tool to address some of these challenges where there
is a particular need for speed and efficiency, or the workload required to provide a peer review is excessive or
overly complex. In this work-in-progress paper we expand upon a prior approach to using genAl to provide
feedback in a peer-review activity (Oliveira et al. 2023) by adding additional contextual information to improve
the quality and specificity of the feedback it provides. Our study takes place in a software engineering capstone
subject where students work on real industry projects with sometimes complex and lengthy code bases. In this
subject, students are required to engage in peer code review, a common industry practice, to reflect on and
improve the quality of their code.

Background

ASCILITE 2024

Navigating the Terrain:

Emerging Frontiers in Learning Spaces, Pedagogies, and Technologies

Code review in software engineering subjects

Code review is a standard industry approach to conducting peer review in software engineering projects.
Engaging students in code review processes helps them understand industry coding standards and best
practices, which are vital for their future careers in the software industry (Indriasari et al., 2009). It also prepares
them to handle complex, open-ended problems with multiple solutions, thus enhancing their ability to work on
real-world projects.

Code review is particularly effective in project-based learning environments where students work on real
projects and participate in open-source communities. This exposure helps students acquire diverse skills and
enhances their motivation by allowing them to contribute to meaningful projects (Alasbali & Bentallah, 2015;
Samson & Oliveira, 2023). Moreover, code review processes can help students understand the broader
implications of their work and prepare them for ethical decision-making in their careers (Jarzemsky et al., 2023).

Despite its benefits, code review also comes with its set of challenges. The process can be time-consuming,
requiring developers to spend considerable time reviewing code changes (Bosu & Carver, 2023; Tufano et al.,
2021). This is especially true in large-scale projects with complex codebases, where the volume of changes can
be overwhelming (Dey et al., 2020). Additionally, the effectiveness of code reviews depends on the expertise
and thoroughness of the reviewers, which can vary widely among team members (Dey et al., 2020; Thompson
& Wagner, 2017).

GenAl code review

The emergence of GenAl, has opened new possibilities for automated code review, offering timely, standardised
feedback beyond the capabilities of standard automated tools (Dey et al., 2020; 2022; Wong et al., 2023). GenAl
represents a significant advancement in the field of artificial intelligence, characterised by its ability to generate
new data and content based on existing inputs. In the context of software development, GenAl has shown
considerable promise in automating and enhancing various processes, including code review (Wong et al., 2023).

The application of GenAl in code review offers several benefits. One of the primary advantages is the ability to
automate repetitive and time-consuming tasks, allowing developers to focus on more complex and creative
aspects of software development. GenAl systems can rapidly identify syntax errors, code smells, and potential
bugs, providing immediate feedback to developers. This not only accelerates the development process but also
enhances the overall quality of the code (Oliveira et al. 2023; Wangoo, 2018). Moreover, GenAl can facilitate a
higher level of standardisation in code reviews. Unlike human reviewers, who may have varying levels of
expertise and subjective biases, GenAl systems apply a consistent set of rules and criteria to evaluate code. This
leads to more uniform and objective feedback, which can be particularly beneficial in large teams and open-
source projects where maintaining consistency is crucial (Batarseh et al., 2020).

In our previous work (Oliveira et al. 2023) we demonstrated that integrating GenAl into the peer review process
in an educational setting not only increased student engagement but also identified a larger number of code
issues in a shorter time, leading to more fixes. This suggests that GenAl can enhance both the educational value
and the practical outcomes of code reviews.

Methodology
Activity design

This earlier study (Oliveira et al. 2023) identified a clear shortcoming of the Al generated peer review attributed
to the genAl model having a lack of contextual understanding of the project and the reasoning for the changes
being made to the code (Version 1). To minimise this problem, we created an updated version of the genAl peer
review process that was provided with the following additional files (Version 2):
e Static Context: This was provided by the project overview document (typically called a README file in
software engineering). This document provides an overview of the project, its purpose and what it does

ASCILITE 2024

Navigating the Terrain:

Emerging Frontiers in Learning Spaces, Pedagogies, and Technologies

and includes any relevant setup and usage instructions for the project as well as licensing and
authorship information.

e Dynamic Context: This included the pull-request (PR) description and comments, which offer insights
into the rationale behind code changes and the discussions among team members.

e GitHub Pull Request Form: To further facilitate the inclusion of relevant contextual information, an
optional GitHub PR form was provided. This form was designed to capture key information about the
changes being proposed.

These additional files were appended as text to the end of the prompt described in our previous study. The
genAl review Version 2 was integrated into the student’s normal workflow and as such, did not require any
additional tasks to receive it. Over the course of the project, students completed two code review stages, the
first occurring in week 8 using Version 1, and the second in week 10 using version 2. For more information on
how the genAl peer review process was structured, please refer to our previous study (Oliveira et al. 2023).

Research design
Participants

Participants were invited from the Software Project (COMP90082) capstone subject (School of Computing and
Information Systems, The University of Melbourne), with a total of 60 students (10 groups of 6 students each)
deciding to participate in the study out of 186 enrolled students. All students, regardless of participation in this
study, used the same tools and followed the same procedures as part of the subject expectations, but data for
this study was only collected and analysed for those who consented to participate. Although 60 students
agreed to participate, only 26 completed the final survey.

Ethics

Ethical approval for this study was obtained from the University’s ethics committee (Ethics approval #24272).
All participants provided informed consent, and their data was anonymised to protect their privacy. Students
who chose not to participate in the study were not disadvantaged in any way and continued to receive the
same educational experience.

Evaluation method

Participants were surveyed in week 11 after they had used both genAl review systems (Version 1 and Version 2)
and asked to compare their experiences with both with a mix of quantitative (Likert scale) and qualitative
questions (open-ended). In the following section we will present the results of this survey and discuss their
implications.

Results and discussion

Out of the 26 students who participated in the survey, only a few responded to the open-ended questions.
Despite the limited qualitative feedback, several important themes emerged. When asked for suggestions to
improve the context-enhanced GenAl code review system, the most common suggestion (3 out of 6) was to
reduce the length of the code reviews. For example, one student noted, "Code reviews are too long and have
too many trivial suggestions". This feedback highlights a potential area for refinement, suggesting that future
iterations of the system should aim to provide more concise reviews without compromising on quality.

When students were asked about the impact of the additional context on the quality of the GenAl code review,
the majority (5 out of 8) indicated that the quality had improved. One student commented, "PR description
helped the GenAl to understand the task for each PR better and gives more context-related feedback for each
file it reviews". Another added, "It seemed to give the Al more context and therefore better feedback overall
(more relevant feedback)." These comments underscore the perceived benefits of providing contextual
information to the GenAl system, leading to more relevant and useful feedback.

A comparison of student perceptions between the original checklist-based system (Version 1) and the new
context-enhanced system (Version 2) is presented in Table 1. The data shows a slight preference for the context-
enhanced system, particularly in terms of overall satisfaction and the clarity and usefulness of feedback.

ASCILITE 2024

Navigating the Terrain:

Emerging Frontiers in Learning Spaces, Pedagogies, and Technologies

Specifically, 92% of respondents were satisfied with Version 2 compared to 77% for Version 1. Similarly, 85% of
respondents found the feedback from Version 2 to be clear, compared to 77% for Version 1. This suggests that
the inclusion of contextual information positively influences student satisfaction and the perceived clarity of the
feedback. Moreover, when comparing the two systems, most students found Version 2 to provide more accurate
(16 out of 26) and useful (17 out of 26) feedback, with only a few preferring Version 1. This reinforces the idea
that additional context enhances the overall quality of the reviews.

The ability of the GenAl system to accurately identify logical and structural code issues, however, did not see a
notable improvement, with 77% agreement for Version 1 and 73% for Version 2. This discrepancy could be due
to several factors, including the possibility that there were fewer logical and structural errors at this stage of the
project or limitations in the type of contextual information provided.

Table 1
Comparison of the results of the Likert Scale questions and percentage of respondents who agree
Strongly Strongly | % agree or
Agree | Agree |Neutral | Disagree | Disagree higher
Question Vi Vv2 |vli|v2|Vvl|V2|Vl| V2 |Vl| V2 Vi V2
| was satisfied with the GenAl code
review system 5|8 |15|16| 6 |2 | 0| O |O| O 77% 92%

The GenAl system accurately identified
trivial issues (syntax errors, standard
code anomalies) in the code 7|16 (1519 4 |1 0| 0 |O]| O 85% 96%
The GenAl system accurately identified
issues (logical and structural code

issues) in the code 314 (17|15 6 |6 0 1]|/0| O 77% 73%
The feedback provided by the GenAl

system was clear 5|7 [15|15| 3 |3 | 3 1]/]0| 0 77% 85%
The feedback was useful in improving

the code 416 |15|16(4 |33 | 1 |0| O 73% | 85%

*V1 - Version 1, V2 — Version 2

Conclusion

This work-in-progress study has demonstrated that incorporating contextual awareness into GenAl-powered
peer code reviews enhances the perceived quality and usefulness of the feedback provided to students in
software engineering education. By enriching the GenAl system with static and dynamic contextual information,
we addressed a key limitation of previous implementations, resulting in more relevant and actionable feedback
as reported by the students.

The findings indicate that students preferred the context-enhanced version of the GenAl system, noting
improvements in feedback accuracy and usefulness. Despite these positive outcomes, the study also identified
areas for further improvement, particularly in reducing the length of the reviews and enhancing the Al’s
capability to detect logical and structural code issues. Given the small sample size and the subjective nature of
student perceptions, these results should be interpreted with caution. Another limitation of this study was that
the quality of the responses was not checked, however previous research (Oliveira et al., 2023) has shown that
a genAl code review can outperform student peer review in identifying trivial and medium difficulty problems,
and the students did not raise any issues with the quality of the genAl feedback.

Future research could focus on refining the contextual inputs, objectively assessing the quality of GenAl
feedback, and exploring the broader impacts on student learning outcomes, including self-efficacy and critical
review skills.

ASCILITE 2024

Navigating the Terrain:

Emerging Frontiers in Learning Spaces, Pedagogies, and Technologies

References

Alasbali, N., & Benatallah, B. (2015, October). Open source as an innovative approach in computer science
education A systematic review of advantages and challenges. In 2015 IEEE 3rd International Conference on
MOOCs, Innovation and Technology in Education (MITE) (pp. 278-283). IEEE.
https://doi.org/10.1109/MITE.2015.7375330

Batarseh, F. A., Mohod, R., Kumar, A., & Bui, J. (2020). The application of artificial intelligence in software
engineering: a review challenging conventional wisdom. Data democracy, 179-232.
https://doi.org/10.1016/B978-0-12-818366-3.00010-1

Bosu, A., & Carver, J. C. (2013, October). Impact of peer code review on peer impression formation: A survey.
In 2013 ACMY/IEEE International Symposium on Empirical Software Engineering and Measurement (pp. 133-
142). IEEE. https://doi.org/10.1109/ESEM.2013.23

Boud, D. and Falchikov, N. (2008). Rethinking assessment in higher education: Learning for the longer term.
Routledge, London. https://www.routledge.com/Rethinking-Assessment-in-Higher-Education-Learning-for-
the-Longer-Term/Boud-Falchikov/p/book/9780415397797

Dey, T., Mousavi, S., Ponce, E., Fry, T., Vasilescu, B., Filippova, A., & Mockus, A. (2020, June). Detecting and
characterizing bots that commit code. In Proceedings of the 17th international conference on mining
software repositories (pp. 209-219). https://doi.org/10.1145/3379597.3387478

Honig, C., Rios, S., & Oliveira, E. (2023). A tool for learning: Classroom use - Cases for generative Al. The
Chemical Engineer, June 2023, 38-42.

Indriasari, T. D., Luxton-Reilly, A., and Denny, P. (2020). A review of peer code review in higher education. ACM
Transactions on Computing Education, 20(3), 1-25. https://doi.org/10.1145/3403935

Jarzemsky, J., Paup, J., & Fiesler, C. (2023, March). "This Applies to the Real World": Student Perspectives on
Integrating Ethics into a Computer Science Assignment. In Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1 (pp. 374-380). https://doi.org/10.1145/3545945.3569846

Liu, N. F., & Carless, D. (2006). Peer feedback: the learning element of peer assessment. Teaching in Higher
Education, 11(3), 279-290. https://doi.org/10.1080/13562510600680582

Novakovich, J. (2016). Fostering critical thinking and reflection through blog-mediated peer feedback. Journal
of Computer Assisted Learning, 32(1), 16-30. https://doi.org/10.1111/jcal. 12114

Oliveira, E., Rios, S., & Jiang, Z. (2023). Al-powered peer review process: An approach to enhance computer
science students’ engagement with code review in industry-based subjects. ASCILITE Publications, 184-194.
https://doi.org/10.14742/apubs.2023.482

Pearce, J., Mulder, R., and Baik, C. (2009). Involving students in peer review: Case studies and practical
strategies for university teaching. Centre for the Study of Higher Education, University of Melbourne,
Parkville, Vic. https://melbourne-cshe.unimelb.edu.au/ data/assets/pdf file/0006/3590943/Involving-
students-in-peer-review.pdf

Samson, A., & Oliveira, E. (2023). University learning partnerships: Enhancing learning, enabling innovation and
addressing challenges in schools. ASCILITE Publications, 531-535. https://doi.org/10.14742/apubs.2023.460

Thompson, C., & Wagner, D. (2017, November). A large-scale study of modern code review and security in
open source projects. In Proceedings of the 13th International Conference on Predictive Models and Data
Analytics in Software Engineering (pp. 83-92). https://doi.org/10.1145/3127005.3127014

Tufano, R., Pascarella, L., Tufano, M., Poshyvanyk, D., & Bavota, G. (2021, May). Towards automating code
review activities. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE) (pp. 163-
174). |IEEE. https://doi.org/10.1109/ICSE43902.2021.00027

Wangoo, D. P. (2018, December). Artificial intelligence techniques in software engineering for automated
software reuse and design. In 2018 4th International Conference on Computing Communication and
Automation (ICCCA) (pp. 1-4). IEEE. https://doi.org/10.1109/CCAA.2018.8777584

Wong, M. F., Guo, S., Hang, C. N., Ho, S. W., & Tan, C. W. (2023). Natural language generation and
understanding of big code for Al-assisted programming: A review. Entropy, 25(6), 888.
https://doi.org/10.3390/e25060888

https://doi.org/10.1109/ESEM.2013.23
https://www.routledge.com/Rethinking-Assessment-in-Higher-Education-Learning-for-the-Longer-Term/Boud-Falchikov/p/book/9780415397797
https://www.routledge.com/Rethinking-Assessment-in-Higher-Education-Learning-for-the-Longer-Term/Boud-Falchikov/p/book/9780415397797
https://doi.org/10.1145/3379597.3387478
https://doi.org/10.1145/3545945.3569846
https://doi.org/10.1080/13562510600680582
https://doi.org/10.1111/jcal.12114
https://doi.org/10.14742/apubs.2023.482
https://melbourne-cshe.unimelb.edu.au/__data/assets/pdf_file/0006/3590943/Involving-students-in-peer-review.pdf
https://melbourne-cshe.unimelb.edu.au/__data/assets/pdf_file/0006/3590943/Involving-students-in-peer-review.pdf
https://doi.org/10.14742/apubs.2023.460
https://doi.org/10.1145/3127005.3127014
https://doi.org/10.1109/ICSE43902.2021.00027
https://doi.org/10.1109/CCAA.2018.8777584
https://doi.org/10.3390/e25060888
https://doi.org/10.1109/MITE.2015.7375330
https://doi.org/10.1016/B978-0-12-818366-3.00010-1
https://doi.org/10.1145/3403935

ASCILITE 2024

Navigating the Terrain:

Emerging Frontiers in Learning Spaces, Pedagogies, and Technologies

Patel, P., Rios, S.A., Valentine, A., & Oliveira. E. (2024). Enhancing Automated Peer Code Reviews in Software
Engineering Education with Context-Aware Generative Al. In T. Cochrane, V. Narayan, E. Bone, C. Deneen, M.
Saligari, K. Tregloan, & R. Vanderburg. (Eds.), Navigating the Terrain: Emerging frontiers in learning spaces,
pedagogies, and technologies. Proceedings ASCILITE 2024. Melbourne (pp. 647-652).
https://doi.org/10.14742/apubs.2024.1446

Note: All published papers are refereed, having undergone a double-blind peer-review process.
The author(s) assign a Creative Commons by attribution license enabling others to distribute, remix, tweak, and
build upon their work, even commercially, as long as credit is given to the author(s) for the original creation.

© Patel, P., Rios, S.A., Valentine, A., & Oliveira. E. 2024

https://doi.org/10.14742/apubs.2024.1446

	Introduction
	Background
	Code review in software engineering subjects
	GenAI code review

	Methodology
	Activity design
	Participants
	Ethics
	Evaluation method

	Results and discussion
	Conclusion
	References

