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This study investigates the enhancement of peer code reviews in software engineering 
education through the integration of Generative Artificial Intelligence (GenAI) with contextual 
awareness. Previous implementations of GenAI, such as ChatGPT, lacked detailed context about 
the educational content and assessment goals, limiting their effectiveness. Our work-in-progress 
research addresses this gap by providing GenAI with additional static and dynamic contextual 
information, including project overviews, pull-request descriptions, and comments. In a 
controlled study involving 26 students from a 12-week software engineering course, we 
compared the efficacy of the original GenAI system with a context-enhanced version. Results 
demonstrated that the context-aware GenAI provided more accurate and useful feedback, as 
perceived by the students. These findings suggest that incorporating contextual information 
improves the quality of automated peer reviews, offering a promising tool for educators to 
enhance student learning and engagement in code review activities. 
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Introduction 
Peer review has been a well-established teaching method, recognised for its diverse benefits and primary role 
in offering formative feedback (Liu & Carless, 2006). Defined as a structured critical analysis by a student of 
another student's work, peer review can be conducted one-on-one, in small groups, or ad-hoc. It can be 
anonymous or personal, synchronous or asynchronous, and scaffolded or free form. Various classroom 
implementations exist, such as forums for discussion, critical feedback on presentations, or reciprocal reviews 
(Pearce et al., 2009). Peer review helps students develop 21st-century skills by applying knowledge, fostering 
critical thinking, problem-solving, and decision-making abilities (Novakovich, 2016) and it also enhances social, 
communication, analytical, and evaluative skills while promoting collaboration (Boud & Falchikov, 2008). 
However, traditional peer review systems face several challenges, including inconsistent quality of feedback, 
potential biases, and the substantial time investment required from students and instructors alike (Fatima et 
al., 2018). These challenges can hinder the effectiveness of peer reviews in achieving educational goals. 

Recently, generative AI (genAI) has emerged as a possible tool to address some of these challenges where there 
is a particular need for speed and efficiency, or the workload required to provide a peer review is excessive or 
overly complex. In this work-in-progress paper we expand upon a prior approach to using genAI to provide 
feedback in a peer-review activity (Oliveira et al. 2023) by adding additional contextual information to improve 
the quality and specificity of the feedback it provides. Our study takes place in a software engineering capstone 
subject where students work on real industry projects with sometimes complex and lengthy code bases. In this 
subject, students are required to engage in peer code review, a common industry practice, to reflect on and 
improve the quality of their code. 

Background 
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Code review in software engineering subjects 

Code review is a standard industry approach to conducting peer review in software engineering projects. 
Engaging students in code review processes helps them understand industry coding standards and best 
practices, which are vital for their future careers in the software industry (Indriasari et al., 2009). It also prepares 
them to handle complex, open-ended problems with multiple solutions, thus enhancing their ability to work on 
real-world projects.  
 
Code review is particularly effective in project-based learning environments where students work on real 
projects and participate in open-source communities. This exposure helps students acquire diverse skills and 
enhances their motivation by allowing them to contribute to meaningful projects (Alasbali & Bentallah, 2015; 
Samson & Oliveira, 2023). Moreover, code review processes can help students understand the broader 
implications of their work and prepare them for ethical decision-making in their careers (Jarzemsky et al., 2023). 
 
Despite its benefits, code review also comes with its set of challenges. The process can be time-consuming, 
requiring developers to spend considerable time reviewing code changes (Bosu & Carver, 2023; Tufano et al., 
2021). This is especially true in large-scale projects with complex codebases, where the volume of changes can 
be overwhelming (Dey et al., 2020). Additionally, the effectiveness of code reviews depends on the expertise 
and thoroughness of the reviewers, which can vary widely among team members (Dey et al., 2020; Thompson 
& Wagner, 2017).  
 
GenAI code review 

The emergence of GenAI, has opened new possibilities for automated code review, offering timely, standardised 
feedback beyond the capabilities of standard automated tools (Dey et al., 2020; 2022; Wong et al., 2023). GenAI 
represents a significant advancement in the field of artificial intelligence, characterised by its ability to generate 
new data and content based on existing inputs. In the context of software development, GenAI has shown 
considerable promise in automating and enhancing various processes, including code review (Wong et al., 2023).  
 
The application of GenAI in code review offers several benefits. One of the primary advantages is the ability to 
automate repetitive and time-consuming tasks, allowing developers to focus on more complex and creative 
aspects of software development. GenAI systems can rapidly identify syntax errors, code smells, and potential 
bugs, providing immediate feedback to developers. This not only accelerates the development process but also 
enhances the overall quality of the code (Oliveira et al. 2023; Wangoo, 2018). Moreover, GenAI can facilitate a 
higher level of standardisation in code reviews. Unlike human reviewers, who may have varying levels of 
expertise and subjective biases, GenAI systems apply a consistent set of rules and criteria to evaluate code. This 
leads to more uniform and objective feedback, which can be particularly beneficial in large teams and open-
source projects where maintaining consistency is crucial (Batarseh et al., 2020). 
 
In our previous work (Oliveira et al. 2023) we demonstrated that integrating GenAI into the peer review process 
in an educational setting not only increased student engagement but also identified a larger number of code 
issues in a shorter time, leading to more fixes. This suggests that GenAI can enhance both the educational value 
and the practical outcomes of code reviews. 
 

Methodology 
Activity design 

This earlier study (Oliveira et al. 2023) identified a clear shortcoming of the AI generated peer review attributed 
to the genAI model having a lack of contextual understanding of the project and the reasoning for the changes 
being made to the code (Version 1). To minimise this problem, we created an updated version of the genAI peer 
review process that was provided with the following additional files (Version 2): 

• Static Context: This was provided by the project overview document (typically called a README file in 
software engineering). This document provides an overview of the project, its purpose and what it does 
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and includes any relevant setup and usage instructions for the project as well as licensing and 
authorship information. 

• Dynamic Context: This included the pull-request (PR) description and comments, which offer insights 
into the rationale behind code changes and the discussions among team members.  

• GitHub Pull Request Form: To further facilitate the inclusion of relevant contextual information, an 
optional GitHub PR form was provided. This form was designed to capture key information about the 
changes being proposed.  

These additional files were appended as text to the end of the prompt described in our previous study. The 
genAI review Version 2 was integrated into the student’s normal workflow and as such, did not require any 
additional tasks to receive it. Over the course of the project, students completed two code review stages, the 
first occurring in week 8 using Version 1, and the second in week 10 using version 2. For more information on 
how the genAI peer review process was structured, please refer to our previous study (Oliveira et al. 2023). 
 
Research design 
Participants 

Participants were invited from the Software Project (COMP90082) capstone subject (School of Computing and 
Information Systems, The University of Melbourne), with a total of 60 students (10 groups of 6 students each) 
deciding to participate in the study out of 186 enrolled students. All students, regardless of participation in this 
study, used the same tools and followed the same procedures as part of the subject expectations, but data for 
this study was only collected and analysed for those who consented to participate. Although 60 students 
agreed to participate, only 26 completed the final survey. 

Ethics 
Ethical approval for this study was obtained from the University’s ethics committee (Ethics approval #24272). 
All participants provided informed consent, and their data was anonymised to protect their privacy. Students 
who chose not to participate in the study were not disadvantaged in any way and continued to receive the 
same educational experience. 

Evaluation method 
Participants were surveyed in week 11 after they had used both genAI review systems (Version 1 and Version 2) 
and asked to compare their experiences with both with a mix of quantitative (Likert scale) and qualitative 
questions (open-ended). In the following section we will present the results of this survey and discuss their 
implications. 
 

Results and discussion 
Out of the 26 students who participated in the survey, only a few responded to the open-ended questions. 
Despite the limited qualitative feedback, several important themes emerged. When asked for suggestions to 
improve the context-enhanced GenAI code review system, the most common suggestion (3 out of 6) was to 
reduce the length of the code reviews. For example, one student noted, "Code reviews are too long and have 
too many trivial suggestions". This feedback highlights a potential area for refinement, suggesting that future 
iterations of the system should aim to provide more concise reviews without compromising on quality. 
  
When students were asked about the impact of the additional context on the quality of the GenAI code review, 
the majority (5 out of 8) indicated that the quality had improved. One student commented, "PR description 
helped the GenAI to understand the task for each PR better and gives more context-related feedback for each 
file it reviews". Another added, "It seemed to give the AI more context and therefore better feedback overall 
(more relevant feedback)." These comments underscore the perceived benefits of providing contextual 
information to the GenAI system, leading to more relevant and useful feedback. 
  
A comparison of student perceptions between the original checklist-based system (Version 1) and the new 
context-enhanced system (Version 2) is presented in Table 1. The data shows a slight preference for the context-
enhanced system, particularly in terms of overall satisfaction and the clarity and usefulness of feedback. 
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Specifically, 92% of respondents were satisfied with Version 2 compared to 77% for Version 1. Similarly, 85% of 
respondents found the feedback from Version 2 to be clear, compared to 77% for Version 1. This suggests that 
the inclusion of contextual information positively influences student satisfaction and the perceived clarity of the 
feedback. Moreover, when comparing the two systems, most students found Version 2 to provide more accurate 
(16 out of 26) and useful (17 out of 26) feedback, with only a few preferring Version 1. This reinforces the idea 
that additional context enhances the overall quality of the reviews.  
 
The ability of the GenAI system to accurately identify logical and structural code issues, however, did not see a 
notable improvement, with 77% agreement for Version 1 and 73% for Version 2. This discrepancy could be due 
to several factors, including the possibility that there were fewer logical and structural errors at this stage of the 
project or limitations in the type of contextual information provided.   
 
Table 1 
Comparison of the results of the Likert Scale questions and percentage of respondents who agree 

 
Strongly 

Agree Agree Neutral Disagree 
Strongly 
Disagree 

% agree or 

higher 

Question V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 

I was satisfied with the GenAI code 
review system 5 8 15 16 6 2 0 0 0 0 77% 92% 

The GenAI system accurately identified 
trivial issues (syntax errors, standard 
code anomalies) in the code 7 6 15 19 4 1 0 0 0 0 85% 96% 

The GenAI system accurately identified 
issues (logical and structural code 
issues) in the code 3 4 17 15 6 6 0 1 0 0 77% 73% 

The feedback provided by the GenAI 
system was clear 5 7 15 15 3 3 3 1 0 0 77% 85% 

The feedback was useful in improving 
the code 4 6 15 16 4 3 3 1 0 0 73% 85% 

*V1 – Version 1, V2 – Version 2  
 

Conclusion 
This work-in-progress study has demonstrated that incorporating contextual awareness into GenAI-powered 
peer code reviews enhances the perceived quality and usefulness of the feedback provided to students in 
software engineering education. By enriching the GenAI system with static and dynamic contextual information, 
we addressed a key limitation of previous implementations, resulting in more relevant and actionable feedback 
as reported by the students. 
  
The findings indicate that students preferred the context-enhanced version of the GenAI system, noting 
improvements in feedback accuracy and usefulness. Despite these positive outcomes, the study also identified 
areas for further improvement, particularly in reducing the length of the reviews and enhancing the AI’s 
capability to detect logical and structural code issues. Given the small sample size and the subjective nature of 
student perceptions, these results should be interpreted with caution. Another limitation of this study was that 
the quality of the responses was not checked, however previous research (Oliveira et al., 2023) has shown that 
a genAI code review can outperform student peer review in identifying trivial and medium difficulty problems, 
and the students did not raise any issues with the quality of the genAI feedback.  
 
Future research could focus on refining the contextual inputs, objectively assessing the quality of GenAI 
feedback, and exploring the broader impacts on student learning outcomes, including self-efficacy and critical 
review skills. 
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