ASCILITE 2025

Future-Focused:

Educating in an Era of Continuous Change

Beyond visual fidelity: The case for emotionally responsive immersive reality in healthcare simulation

Md Haseen Akhtar

Department of Design, Indian Institute of Technology Hyderabad, Telangana, India

Thomas Cochrane

Center for the Study of Higher Education, The University of Melbourne, Victoria, Australia

Healthcare training using simulation has experienced significant technological advancement, with immersive reality (XR) enhancements demonstrating impressive visual sophistication and procedural authenticity. However, this progress conceals a critical misalignment between technological priorities and educational outcomes. Current XR healthcare education operates under what we term the "fidelity fallacy" - the assumption that high visual realism automatically translates to effective clinical preparation (Hamstra et al., 2014). This presentation challenges this paradigm, arguing that the industry emphasis on environmental authenticity has systematically neglected the affective dimensions essential for clinical competence.

Contemporary research reveals that XR healthcare implementations predominantly focus on anatomical accuracy and procedural fidelity, while very few incorporate emotional regulation elements (Li, 2024). This disparity is particularly problematic given evidence that emotional resilience significantly impacts clinical performance and patient outcomes. Research consistently demonstrates that healthcare professionals and other stakeholders experiencing elevated stress show substantially decreased diagnostic accuracy and reduced communication effectiveness during critical incidents (Akhtar et al., 2025a). Yet existing XR systems present static, preprogrammed scenarios that fail to respond to learners emotional states, creating an authenticity gap between training and practice.

The disconnect becomes more pronounced when examining real-world clinical demands. Healthcare professionals face numerous unexpected variations during critical events, requiring constant emotional regulation and adaptive decision-making. Current XR implementations, despite their visual sophistication, cannot adapt to individual emotional responses, limiting their effectiveness in preparing learners for these complex realities. Whilst many simulation centres collect biometric data, very few utilise it for real-time adaptation, representing a significant underutilisation of available technology (Akhtar et al., 2025b).

This presentation advocates for a paradigm shift towards emotionally responsive XR systems that establish bidirectional relationships between learner and environment. Evidence from adjacent fields demonstrates the feasibility of such approaches - military training, aviation, and competitive sports have successfully integrated physiological monitoring with environmental adaptation (Yockey, 2023; Bernabei & Costantino, 2024). Healthcare education lag in adoption reflects not technological limitations but conceptual constraints rooted in the fidelity fallacy.

The argument extends beyond individual learning outcomes to systemic healthcare implications. Studies show simulations with real-time biofeedback yield substantial improvements in stress management, decision accuracy, and learning transfer compared to traditional approaches (Farsi et al., 2021). These improvements translate directly to patient safety and care quality. Furthermore, cultural considerations add complexity often ignored in current implementations research identifies significant variations in stress manifestation and decision-making patterns amongst healthcare students from diverse backgrounds, yet few XR simulations incorporate culturally specific elements (Zhang et al., 2024).

The presentation introduces the Emotionally Responsive XR Clinical Environment (ERXCE) framework as a solution addressing these documented gaps. ERXCE establishes continuous feedback loops between physiological monitoring and adaptive scenario complexity, creating personalised learning experiences that prepare healthcare professionals for both technical and

ASCILITE 2025

Future-Focused:

Educating in an Era of Continuous Change

emotional challenges of clinical practice. By integrating affective computing with clinical simulation through multi-modal XR technologies, ERXCE addresses the critical gap between technical skill development and emotional resilience training.

This work argues for a shift in clinical simulation for healthcare training from static representation to responsive adaptation that recognises the complex interplay between technical competence and emotional regulation in healthcare practice.

Keywords: Healthcare simulation, XR technology, emotional resilience, biometric adaptation, clinical education, fidelity paradigm

References

- Akhtar, M. H., & Cochrane, T. (2025a). Stakeholder engagement in XR Healthcare education. Pacific Journal of Technology Enhanced Learning, 7(2), 7–9. https://doi.org/10.24135/pjtel.v7i2.212
- Akhtar, M. H., & Cochrane, T. (2025b). Biometric-Driven adaptation in healthcare simulation. Pacific Journal of Technology Enhanced Learning, 7(2), 14–16. https://doi.org/10.24135/pitel.v7i2.213
- Bernabei, M., & Costantino, F. (2024). Adaptive automation: Status of research and future challenge. Robotics and Computer-Integrated Manufacturing, 88, Article 102724. https://doi.org/10.1016/j.rcim.2024.102724
- Farsi, Z., Yazdani, M., Butler, S., Nezamzadeh, M., & Mirlashari, J. (2021). Comparative effectiveness of simulation versus serious game for training nursing students in cardiopulmonary resuscitation: A randomized control trial. International Journal of Computer Games Technology, 2021, Article 6695077. https://doi.org/10.1155/2021/6695077
- Hamstra, S. J., Brydges, R., Hatala, R., Zendejas, B., & Cook, D. A. (2014). Reconsidering fidelity in simulation-based training. Academic Medicine, 89(3), 387-392. https://doi.org/10.1097/ACM.0000000000000130
- Li, S. (2024). Immersive technologies in health professions education: A bibliometric analysis. Computers & Education: X Reality, 4, Article 100051. https://doi.org/10.1016/j.cexr.2024.100051
- Yockey, C. (2023). Using biometrics to evaluate the efficacy of virtual reality learning environments through the detection of awe. 2023 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC). https://apps.dtic.mil/sti/trecms/pdf/AD1203989.pdf
- Zhang, L., Patterson, F., Penman, A., Heneghan, C., Cleland, J., & Tiffin, P. A. (2024). Understanding simulation-based learning for health professions students from culturally and linguistically diverse backgrounds: A scoping review. Advances in Health Sciences Education. https://doi.org/10.1007/s10459-024-10384-6

Akhtar, M. H. & Cochrane, T. (2025, Nov 30 – Dec 3). Beyond visual fidelity: the case for emotionally responsive immersive reality in healthcare simulation [Pecha Kucha Presentation]. Australasian Society for Computers in Learning in Tertiary Education Conference, Adelaide, Australia. DOI: https://doi.org/10.65106/apubs.2025.2766.

Note: All published papers are refereed, having undergone a double-blind peer-review process. The author(s) assign a Creative Commons by attribution license enabling others to distribute, remix, tweak, and build upon their work, even commercially, as long as credit is given to the author(s) for the original creation.

© Akhtar, M. H. & Cochrane, T. 2025