

ASCLITE 2025

Future-Focused:

Educating in an Era of Continuous Change

Assessment by design: A classification framework for learning assurance in the age of GenAI

Anne-Marie Chase

Swinburne University of Technology

Assessment classification plays a critical role in ensuring transparency, coherence, and academic integrity across higher education curricula. The rapid emergence of generative artificial intelligence (genAI) has intensified the need for institutions to assure learning outcomes that are demonstrably independent of AI-generated content. This challenge is compounded by the need to manage institutional risks, particularly misconduct arising from inappropriate genAI use, and to uphold assessment validity as a measure of student learning.

Despite this urgency, there remains a lack of structured, scalable frameworks that support both pedagogical intent and institutional governance in assessment classification. This paper addresses that gap by proposing a revised classification system, comprising assessment categories and types, designed to meet the diverse needs of students, educators, and governance bodies. The model aims to enhance clarity, support constructive alignment, and enable data-informed decision-making across the curriculum.

Drawing on TEQSA's genAI principles and the Australian Qualifications Framework (AQF), the approach integrates verb-based classification aligned with learning outcomes to support a course-level approach to assessment. While implementation is ongoing, the proposed model offers a practical, standards-aligned response to institutional and regulatory challenges, contributing a framework that supports a pedagogically sound assessment while strengthening institutional capacity to assess and mitigate risk.

Keywords: assessment classification, academic integrity, generative artificial intelligence (genAI), learning assurance, curriculum governance, risk mitigation, conceptual framework

Introduction

The rapid proliferation of generative artificial intelligence (genAI) tools in higher education over the past two years has intensified the imperative for institutions to assure learning outcomes that are demonstrably independent of AI-generated content (Duah & McGivern, 2024; Nikolic et al., 2024). Institutions must now not only assure learning outcomes but also assess and manage the risk of academic misconduct associated with genAI misuse (Dawson et al., 2024; Lodge, 2024; Rundle et al., 2020). This paper responds to this dual imperative, pedagogical and regulatory, by proposing a classification system that supports both learning assurance and risk mitigation. In Australia's standards-based education system, legislation mandates that institutions may only confer qualifications upon students who have met the declared learning outcomes of their courses (Department of Education, 2021). This requirement places renewed emphasis on the design of assessments that can reliably map student performance to intended learning outcomes.

To meet this obligation, institutions must implement assessment practices that ensure the integrity, fairness, and validity of student work (Dawson et al., 2024; Tai et al., 2023). The Tertiary Education Quality and Standards Agency (TEQSA) highlights the importance of triangulating multiple assessment types across a course to enhance trustworthiness and inclusivity (Lodge et al., 2023) mitigating genAI-related risks while supporting a more holistic and equitable model of evaluation (Le, 2024). The key message of this paper is that a well-structured classification system can serve as a foundation for future-ready assessment practices.

ASCILITE 2025

Future-Focused:

Educating in an Era of Continuous Change

Institutional Context

At present, Swinburne University of Technology classifies assessments using a Curriculum Management System (CMS). The CMS serves as the university's central repository for all accredited course and unit curriculum information and is regarded as the single source of truth for academic governance. Due to legacy structures and incremental changes over time, the current classification framework has become overly complex and difficult to navigate. This has resulted in significant overlap between categories and types, redundancy in terminology, and a lack of clarity in definitions, all factors that contribute to confusion and inconsistency in reporting. These limitations have underpinned the need for a more coherent and scalable model.

The impetus for reclassification stems from the need to streamline assessment data in a way that supports both pedagogical intent and institutional governance. The revised classification system is designed to provide meaningful, maintainable information that can be integrated into the university's accreditation processes, particularly through the school's academic processes. By simplifying and standardising assessment descriptors, the new model aims to enhance the quality and consistency of curriculum documentation and facilitate more effective oversight of assessment practices.

Stakeholder Needs

A comprehensive understanding of stakeholder needs across Swinburne University of Technology has been central to the impetus for assessment reform. These needs span pedagogical, operational, and governance domains, and reflect the imperative for a classification system that is not only educationally meaningful but also administratively sustainable.

For students, the primary concern lies in the clarity and consistency of assessment information across units and courses (Ainsworth, 2011; Sadler, 1989). Inconsistencies in how assessments are described, coupled with overlapping and ambiguous terminology, have historically led to confusion and a lack of transparency. Students require a system that enables them to easily interpret what is being assessed and how, and that supports their ability to prepare effectively and engage confidently with assessment tasks (Sadler, 1989).

Academic staff, who are responsible for designing, delivering, and assuring assessment, require a framework that supports curriculum development, accreditation, and quality assurance (TEQSA, 2017a, 2023). Their needs include alignment with national standards such as the Australian Qualifications Framework (AQF), as well as tools that facilitate constructive alignment between learning outcomes and assessment tasks. This alignment being the first step to ensuring assessment validity (Divjak et al., 2023; Jani et al., 2020), the importance of which in relation to academic misconduct and the use of genAI, has been highlighted in the work of Dawson et al. (2024). In our standards based system a valid assessment that provides evidence of students learning should be a priority (Dawson et al., 2024). Staff also need mechanisms for ensuring diversity in assessment design, clarity in expectations for teaching teams, and access to data that can inform course/program-level planning (Charlton & Newsham-West, 2024).

At the institutional level, the university's central quality services team, which encompasses Academic Integrity, Policy, Planning, and Quality, as well as Curriculum Accreditation, requires assessment data that is structured, reliable, and actionable. Quality Services must be able to monitor the contribution of assessments to unit and course quality, identify trends in assessment design, and support compliance with regulatory frameworks such as the Higher Education Standards Framework (Department of Education, 2021). Additionally, the central teaching and learning unit needs visibility into areas where professional learning may be required, particularly in response to emerging challenges such as the integration of genAI in assessment.

ASCOLITE 2025

Future-Focused:

Educating in an Era of Continuous Change

For institutional governance teams, the ability to assess and manage risk, particularly the risk of academic misconduct through inappropriate use of genAI, is critical (Lodge, 2024). This includes the need for structured data that can inform risk assessments at the course level and support compliance with TEQSA's expectations for academic integrity. For academic staff, risk intersects with assessment validity (Dawson et al., 2024), requiring design approaches that provide students with the optimum experiences to demonstrate learning and reduce opportunities for misconduct (Ellis & Murdoch, 2024) while maintaining pedagogical integrity.

These distinct but interconnected needs highlight the importance of a classification system that can serve multiple purposes: enhancing the student experience, supporting academic practice, and enabling institutional oversight. Beyond institutional needs, adoption of similar classification frameworks across institutions could enable sector wide benchmarking of assessment practices, enhancing comparability and supporting consistent responses to regulatory standards.

In response to these needs, Swinburne University of Technology has developed a revised classification system that introduces a two-tiered framework comprising assessment categories and assessment types. This system is designed to provide a simplified and structured overview of assessments, clearly communicating the knowledge and skills being assessed and the form of student output. For students, this enhances transparency and consistency, and fosters trust in assessment practices.

For academic staff, the framework aligns with the AQF and supports constructive alignment between learning outcomes and assessment design. It enables the development of diverse and inclusive assessment programs, attentions AQF alignment, provides a conceptual foundation for rubric development, indicates feedback focus and generates course-level data to inform curriculum planning. The system also promotes consistency across teaching teams by establishing a shared language for assessment.

At the governance level, the classification system equips Quality Services with the data needed to monitor assessment quality, identify institutional trends, and for the teaching and learning team to target professional learning initiatives. It also enhances the university's ability to demonstrate assurance of learning to external stakeholders, including regulatory and accreditation bodies.

By addressing the needs of students, educators, and institutional leaders, the revised classification system lays the groundwork for a more transparent, equitable, and future-focused assessment ecosystem.

Development of an Assessment Classification Framework

The development of the revised assessment classification system at Swinburne University of Technology has been informed by the guiding principles published by the Tertiary Education Quality and Standards Agency (TEQSA) (Lodge et al., 2023), which address the implications of genAI for assessment design and integrity. While these principles are not prescriptive, they offer timely and expert insights into how assessment practices may need to evolve in response to the opportunities and challenges posed by genAI.

Central to the TEQSA guidance is the recommendation that institutions adopt a course-level approach to assessment design, one that incorporates multiple assessment types to triangulate evidence of student learning (Lodge et al., 2023). This approach enhances the reliability of assessment outcomes and supports more inclusive practices by recognising the diverse ways in which students demonstrate achievement. The revised classification system at Swinburne University of Technology directly supports this recommendation by enabling course directors to map and monitor the distribution of assessment categories and types across a course of study. Through the use of the CMS, educators can monitor data that reflects the variability and alignment of assessments, thereby strengthening the institution's capacity to assure learning outcomes.

The TEQSA principles also emphasise the importance of evidencing student learning that is independent of AI-generated content. While a range of assessment strategies can contribute to this goal, the revised classification system includes provisions for identifying assessments that require completion under controlled

ASCLITE 2025

Future-Focused:

Educating in an Era of Continuous Change

conditions, thereby supporting the integrity of unassisted tasks (Pearce & Chiavaroli, 2023) where appropriate. However, the system does not privilege exams as a default solution; rather, it recognises them as one of several tools that may be used within a broader, multi-method assessment strategy.

In addition, the classification framework incorporates an indicator for assessment mode, individual, group, or a combination of both. This feature enables the institution to monitor the extent to which collaborative learning is embedded within assessment design, in alignment with TEQSA's call for assessments that foster teamwork and communication skills (Lodge et al., 2023). By capturing this information systematically, the university is better positioned to evaluate the inclusivity and authenticity of its assessment practices.

Taken together, these design features reflect a deliberate and future-focused response to the evolving landscape of higher education assessment. They position Swinburne University of Technology to meet both regulatory expectations and pedagogical aspirations, ensuring that assessment remains a valid, reliable, and ethical mechanism for evidencing student learning in an AI-enhanced world.

Assessment Category

The revised classification system introduces five assessment categories that reflect the knowledge, skills and competencies students are expected to demonstrate. These categories are grounded in the Australian Qualifications Framework (2013b), which provides a nationally consistent basis for describing learning outcomes across qualification levels. Each category is defined according to the Australian Qualifications Framework (2013a) definitions, ensuring alignment with national standards and supporting the development of assessments that are both pedagogically sound and defensible within academic governance processes.

While the AQF provides the overarching definitions, the specific categories adopted in this framework were informed by the work of Cleary and Samarawickrema (2014) who developed a classification of verbs aligned with AQF levels. Their approach asks what kind of learning is being addressed and examines the verb used to express the evidence of learning, typically the verb embedded in the learning outcome itself. Although other taxonomies such as the Revised Bloom's Taxonomy (Anderson & Krathwohl, 2001), the Dreyfus Model of Skill Acquisition (Dreyfus & Dreyfus, 1980), and the SOLO taxonomy (Biggs & Collis, 1982) offer valuable perspectives on learning progression (Griffin, 2017), alignment with the AQF was considered most appropriate for this classification. By identifying the verbs used in the learning outcomes being assessed, a determination of category for the specified assessment can be made.

While there is broad recognition across the sector that AQF level descriptors are less effective than desired (Perkins et al., 2019; Phillips, 2018), the AQF remains the national policy document governing regulated qualifications in Australia.

Cognitive skills are defined by the AQF as “the mental skills that are used in the process of acquiring and applying knowledge and include reasoning, perception and intuition” (Australian Qualifications Framework, 2013a). This category focuses on what a student knows and understands, and is typically associated with verbs such as analyse, interpret, justify, evaluate, and reflect. These verbs are commonly used in learning outcomes that require students to demonstrate critical thinking, synthesis of ideas, and conceptual understanding.

Communication skills are described as “the skills that enable a person to convey information so that it is received and understood and include written and oral skills appropriate for the level of the qualification” (Australian Qualifications Framework, 2013a). This category encompasses the ability to articulate ideas clearly and effectively, whether in written, spoken, or multimodal forms. Verbs such as articulate, debate, persuade, report, and elucidate are indicative of this domain and are often used in assessments that require students to engage with audiences, structure arguments, or present findings.

Technical skills are defined as “the operational skills necessary to perform certain work and learning activities” (Australian Qualifications Framework, 2013a). This category emphasises what a student can do in practical or

ASCILITE 2025

Future-Focused:

Educating in an Era of Continuous Change

applied contexts. It includes verbs such as design, construct, implement, troubleshoot, and verify, which are typically associated with assessments that require the application of procedures, tools, or techniques in discipline-specific tasks.

Creative skills are described as “those that may lead to innovative, imaginative and artistic outputs” (Australian Qualifications Framework, 2013a). This category supports assessments that encourage originality, experimentation, and aesthetic expression. Verbs such as compose, devise, generate, transform, and exhibit are representative of this domain, and are often used in tasks that involve design thinking, artistic production, or conceptual innovation.

Research is defined as “systematic experimental and theoretical work, application and/or development that results in an increase in the dimensions of knowledge” (Australian Qualifications Framework, 2013a). This category is most relevant at higher qualification levels, particularly postgraduate study, and includes verbs such as investigate, synthesise, critique, hypothesise, and validate. These verbs reflect the processes of inquiry, analysis, and knowledge generation that underpin scholarly research.

The use of these categories provides a structured approach to assessment classification that is both theoretically grounded and practically useful. By categorising assessment tasks with AQF-defined domains of learning, educators can ensure that assessments are appropriately calibrated to the level and purpose of the qualification. This alignment also supports constructive alignment between learning outcomes, teaching activities, and assessment tasks, thereby enhancing the coherence and transparency of curriculum design (Charlton & Newsham-West, 2024; TEQSA, 2017b), and providing evidence to assure learning, ensuring that student output can be mapped to learning outcomes.

While some verbs may appear across multiple categories, for example, “analyse” may be relevant to both cognitive and technical domains, the classification system encourages educators to select the category that best reflects the primary intent, or primary construct (Griffin et al., 2017), of the assessment. This decision-making process fosters intentionality in assessment design and supports the development of rubrics (Griffin et al., 2017) that are aligned with the specific skills and knowledge being evaluated. This in turn can support feedback loops (McTighe & Frontier, 2022), student feedback literacy (Carless & Boud, 2018; Dawson, 2024) and self-reflection (Panadero & Romero, 2014). Given decisions about assessment category and type will often be made at the accreditation stage, before the assessment is developed, clear emphasis can be placed on the use of the chosen verb in the outcome (Popenici & Millar, 2015), and consequent assessment task design (Carless, 2016). Conversations within a school or department that underpin category selection will increase understanding of outcome writing, use of verbs at each AQF level and subsequent assessment writing. Both the chosen category and decision-making process that underpin it inform task design, rubric development and feedback. The conversation, reflections and deliberations that precede a decision are as almost as important as the decision itself, as these considered factors shape subsequent actions in assessment design and implementation.

Emphasising the verbs used in the learning outcomes also empowers educators to determine the appropriate level of genAI usage in assessments. Used in conjunction with Swinburne University of Technology’s AI Assessment Scale (AIAS) (Perkins et al., 2023) the categories clarify what skills, knowledge or application are being assessed and, consequently, what is not the focus, guiding appropriate and ethical use of genAI. This foundation for determining appropriate genAI use can be expanded to the creation of developmental assessment frameworks (Griffin et al., 2017) introducing academics to rigorous design methodologies capable of making learning explicit (Chase & Galvin, 2025).

In addition to supporting pedagogical clarity, the categorisation of assessments enables the institution to collect meaningful data on assessment practices across units and courses. This data can inform quality assurance processes, support professional learning, and contribute to a more equitable and future-focused assessment ecosystem.

ASCILITE 2025

Future-Focused:

Educating in an Era of Continuous Change

Assessment Type

While there is limited peer-reviewed literature that systematically categorises assessment types, several institutions have developed internal frameworks to support consistency and transparency in assessment design (Charles Sturt University, 2023; Federation University, 2023; Kampen, 2021; Northern Illinois University Center for Innovative Teaching and Learning, 2012). Building on this institutional practice, Swinburne University of Technology has adopted a classification model that identifies six distinct assessment types. These types are intended to describe the form of student output and the mode through which learning is demonstrated. They operate independently of assessment categories, allowing educators to select the most appropriate format for evidencing achievement of learning outcomes.

The first type, **written assessment**, refers to tasks that primarily require a written response. These may include essays, reports, literature reviews, or other forms of structured written work. Such assessments are commonly used to evaluate students' ability to synthesise information, construct arguments, and communicate ideas in a coherent and academically rigorous manner.

Product-based assessments involve the creation of an artefact or output, which may be physical, digital, or conceptual. These tasks often assess both the final product and the developmental process. Examples include design prototypes, portfolios, models, or multimedia artefacts. This type of assessment is particularly relevant in disciplines where creativity, innovation, or applied problem-solving are central to the learning outcomes.

Oral assessments require students to demonstrate their learning through spoken communication. These may take the form of presentations, interviews, debates, or viva voces. Oral assessments are valuable for evaluating students' ability to articulate ideas, respond to questions in real time, and engage with audiences in a professional or academic context.

Performance assessments involve the demonstration and application of knowledge, skills, and work habits through a performance task. These assessments are typically conducted in simulated or controlled environments and are common in disciplines such as the performing arts, laboratory sciences, or clinical education. A key feature of this type is the live or recorded demonstration of competence in a structured setting.

Practice-based assessments are designed to measure student competency in authentic, real-world contexts. These assessments are often situated in professional or workplace environments and may include placements, practicums, or fieldwork. They are particularly suited to disciplines with strong vocational or applied components, where the demonstration of professional standards and behaviours is essential.

The final type, **student-determined/choice** assessment, allows students to select the format in which they demonstrate their learning. This approach supports learner agency and inclusivity by accommodating diverse strengths and preferences. For example, a student may choose to submit a written report, a video presentation, or an audio recording in response to the same task brief. This flexibility encourages creativity and personalisation while maintaining alignment with the intended learning outcomes.

Although exams are not defined as a separate type, any of the proposed assessment types may be delivered under exam, or controlled conditions. Where assessments are time-limited, invigilated, or require restricted access to resources, they may be designated as assessments conducted under such conditions. To support administrative planning and uphold academic integrity, the classification system includes the option to indicate whether an assessment must be scheduled during the final assessment period or conducted under controlled conditions. Clear definitions of these conditions are essential to ensure consistency and transparency for all stakeholders.

ASCOLITE 2025

Future-Focused:

Educating in an Era of Continuous Change

By providing a structured yet flexible framework for describing assessment outputs, the classification of assessment types enhances the clarity of curriculum documentation, supports equitable assessment design, and enables meaningful analysis of assessment practices across the institution.

Conclusion

The reclassification of assessment at Swinburne University of Technology represents a significant step toward a more transparent, coherent, and future-ready approach to curriculum design and academic governance. By introducing a two-tiered framework that distinguishes between assessment category and assessment type, the institution has established a system that supports constructive alignment between learning outcomes and assessment tasks, enhances clarity for students and educators, and enables meaningful variation across a course or program.

The classification system also contributes to broader institutional goals, including the promotion of academic integrity, the assurance of learning, and the development of learner-centred assessment practices. Its alignment with the Australian Qualifications Framework (AQF) ensures that assessments are appropriately calibrated to qualification levels, while its compatibility with TEQSA's guiding principles positions Swinburne University of Technology to respond proactively to the challenges and opportunities presented by generative artificial intelligence. In particular, the emphasis on AQF-aligned verbs within the assessment categories provides educators with a clear mechanism for determining the appropriate role of AI in assessment design, supporting ethical and transparent practices.

Beyond its pedagogical and governance benefits, the classification system also contributes to institutional risk management. By enabling a structured approach to identifying and classifying assessments, it supports the development of course-level strategies that balance integrity and security. This is particularly important in an era where the use of genAI in assessment introduces new and evolving risks to learning assurance.

Implementation of the new classification system will require a phased and well-supported approach. Professional learning, system updates, and change management strategies will be essential to ensure that academic staff are equipped to engage with the framework meaningfully and consistently. The success of the reclassification will depend not only on its technical integration into systems such as the CMS but also on its uptake as a shared language and conceptual tool across the university.

While the framework offers a robust foundation for assessment reform, it is not without limitations. The classification of assessments into discrete categories and types may not fully capture the complexity or interdisciplinarity of some assessment tasks. There is also the potential for overlap between categories, particularly where verbs or learning outcomes span multiple domains. These challenges underscore the importance of professional judgement and collaborative dialogue in the application of the framework. As generative AI technologies continue to evolve, periodic review and adaptation of the classification system will be essential to ensure alignment with emerging educational technologies and regulatory developments.

Future research could explore the impact of the classification system on student learning outcomes, assessment equity, and curriculum coherence across disciplines. Longitudinal studies may also be valuable in evaluating how the framework influences assessment design practices over time, particularly in relation to the integration of AI tools and technologies. Additionally, comparative studies with other institutions that have implemented similar classification models could provide insights into best practices and opportunities for refinement.

Ultimately, this reclassification initiative lays the groundwork for a more intentional, data-informed, and pedagogically aligned assessment ecosystem. It affirms Swinburne University of Technology's commitment to educational innovation and positions the university to lead in shaping assessment practices that are responsive to the evolving demands of higher education.

ASCILITE 2025

Future-Focused:

Educating in an Era of Continuous Change

References

Ainsworth, L. (2011). *Rigorous curriculum design: How to create curricular units of study that align standards, instruction, and assessment*. Lead+ Learn Press.

Anderson, L. W., & Krathwohl, D. R. (Eds.). (2001). *A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives*. Allyn & Bacon.

Australian Qualifications Framework. (2013a). AQF Glossary of Terminology. https://www.aqf.edu.au/sites/default/files/aqf_glossary_july2011.pdf

Australian Qualifications Framework. (2013b). *AQF levels*. Retrieved 7 July from <https://www.aqf.edu.au/framework/aqf-levels>

Biggs, J. B., & Collis, K. F. (1982). *Evaluating the quality of learning: The SOLO taxonomy (Structure of the Observed Learning Outcome)*. Academic press.

Carless, D. (2016). Scaling up assessment for learning: Progress and prospects. *Scaling up assessment for learning in higher education*, 3-17.

Carless, D., & Boud, D. (2018). The development of student feedback literacy: enabling uptake of feedback. *Assessment & Evaluation in Higher Education*, 43(8), 1315-1325. <https://doi.org/10.1080/02602938.2018.1463354>

Charles Sturt University. (2023). *Division of learning: Assessment types*. Charles Sturt University. Retrieved 22 January from <https://www.csu.edu.au/division/learning-teaching/assessments/assessment-types>

Charlton, N., & Newsham-West, R. (2024). A conceptual model for program-level assessment. *Higher Education Research & Development*, 43(8), 1721-1736. <https://doi.org/10.1080/07294360.2024.2364094>

Chase, A.-M., & Galvin, K. (2025). *Thinking to learn: Managing the risks of outsourcing to genAI [Manuscript submitted for publication]*. Swinburne University of Technology.

Cleary, K., & Samarawickrema, G. (2014). Learning outcome verbs for AQF levels 4-10. <https://www.vu.edu.au/sites/default/files/learning-outcome-verbs-aqf-levels-4-10.pdf>

Dawson, P. (2024). *Improving feedback and developing student feedback literacy*. University of New South Wales. <https://www.youtube.com/watch?v=iEOLGKCEsY>

Dawson, P., Bearman, M., Dollinger, M., & Boud, D. (2024). Validity matters more than cheating. *Assessment & Evaluation in Higher Education*. <https://doi.org/https://doi.org/10.1080/02602938.2024.2386662>

Department of Education. (2021). Higher Education Standards Framework (Threshold Standards) In. Canberra, Australia: Tertiary Education Quality and Standards Agency.

Divjak, B., Svetec, B., Horvat, D., & Kadoić, N. (2023). Assessment validity and learning analytics as prerequisites for ensuring student-centred learning design. *British Journal of Educational Technology*, 54(1), 313-334. <https://doi.org/https://doi.org/10.1111/bjet.13290>

Dreyfus, S. E., & Dreyfus, H. L. (1980). A Five-Stage Model of the Mental Activities Involved in Directed Skill Acquisition. *ORC-80-2*. <https://doi.org/10.21236/ada084551>

Duah, J. E., & McGivern, P. (2024). How generative artificial intelligence has blurred notions of authorial identity and academic norms in higher education, necessitating clear university usage policies. *The International Journal of Information and Learning Technology*, 41(2), 180-193.

Ellis, C., & Murdoch, K. (2024). The educational integrity enforcement pyramid: a new framework for challenging and responding to student cheating. *Assessment & Evaluation in Higher Education*, 1-11. <https://doi.org/10.1080/02602938.2024.2329167>

Federation University. (2023). *Higher education assessment categories* <https://federation.edu.au/current-students/essential-info/administration/he-assessment-categories>

Griffin, P. (Ed.). (2017). *Assessment for Teaching* (2nd ed.). Cambridge University Press. <https://doi.org/10.1017/9781108116053.003>.

Griffin, P., Francis, M., & Robertson, P. (2017). Judgement-based assessment. In P. Griffin (Ed.), *Assessment for Teaching* (2 ed., pp. 90-112). Cambridge University Press. <https://doi.org/DOI:10.1017/9781108116053.007>

ASCLITE 2025

Future-Focused:

Educating in an Era of Continuous Change

Jani, M. D. M., Latif, A. A., & Talib, R. (2020). Development of the Constructive Alignment Evaluation Instrument for Lecturers of Teachers Education Institutes. *International Journal of Psychosocial Rehabilitation*, 24(05). <https://doi.org/https://doi.org/10.37200/ijpr/v24i5/pr2020234>

Kampen, M. (2021). *6 Types of Assessment (and How to Use Them)*. <https://www.prodigygame.com/main-en/blog/types-of-assessment/>

Le, X. (2024). Assessment Reform in Higher Education: An Ethical Approach to Harness the Power of Generative Artificial Intelligence. *Education Research & Perspectives*, 51.

Lodge, J. M. (2024). The evolving risk to academic integrity posed by generative artificial intelligence: Options for immediate action. *Tertiary Education Quality and Standards Agency*, 2024-2008.

Lodge, J. M., Howard, S., & Bearman, M. (2023). *Assessment reform for the age of artificial intelligence*. <https://www.teqsa.gov.au/sites/default/files/2023-09/assessment-reform-age-artificial-intelligence-discussion-paper.pdf>

McTighe, J., & Frontier, T. (2022). How to provide better feedback through rubrics. *Educational Leadership*, 79(7), 17-23.

Nikolic, S., Carolyn, S., Rezwanul, H., Scott, D., Sarah, G., Marina, B., Sarah, L., M., H. G., & and Neal, P. (2024). ChatGPT, Copilot, Gemini, SciSpace and Wolfram versus higher education assessments: an updated multi-institutional study of the academic integrity impacts of Generative Artificial Intelligence (GenAI) on assessment, teaching and learning in engineering. *Australasian Journal of Engineering Education*, 29(2), 126-153. <https://doi.org/10.1080/22054952.2024.2372154>

Northern Illinois University Center for Innovative Teaching and Learning. (2012). *Formative and summative assessment. In Instructional guide for university faculty and teaching assistants*. <https://www.niu.edu/citl/resources/guides/instructional-guide>

Panadero, E., & Romero, M. (2014). To rubric or not to rubric? The effects of self-assessment on self-regulation, performance and self-efficacy. *Assessment in Education: Principles, Policy & Practice*, 21(2), 133-148. <https://doi.org/10.1080/0969594X.2013.877872>

Pearce, J., & Chiavaroli, N. (2023). Rethinking assessment in response to generative artificial intelligence. *Medical education*, 57(10), 889-891. <https://doi.org/https://doi.org/10.1111/medu.15092>

Perkins, K., Brown, J., Weldon, P., & Wignall, L. (2019). *Revision or re-vision? Exploring approaches to the differentiation of qualification types in the Australian Qualifications Framework*. https://research.acer.edu.au/transitions_misc/32

Perkins, M., Furze, L., Roe, J., & MacVaugh, J. (2023). Navigating the generative AI era: Introducing the AI assessment scale for ethical GenAI assessment. *arXiv*. <https://open-publishing.org/journals/index.php/jutlp/article/view/810>

Phillips, K. (2018). *Contextual Research for the Australian Qualifications Framework Review: Final report*. <https://docs.education.gov.au/node/50811>

Popenici, S., & Millar, V. (2015). *Writing learning outcomes: A practical guide for academics*. https://ishare.mq.edu.au/prod/file/9505dcdc-e1c9-4807-a946-d7b1c34d8a23/1/EXT%202015%20Writing_Learning-Outcomes-Guide-web-UniMelbourne.pdf

Rundle, K., Curtis, G., & Clare, J. (2020). Why students choose not to cheat. In T. Bretag (Ed.), *A Research Agenda for Academic Integrity* (pp. 100-111). Edward Elgar Publishing. <https://doi.org/https://doi.org/10.4337/9781789903775.00014>

Sadler, D. R. (1989). Formative assessment and the design of instructional systems. *Instructional Science*, 18(2), 119-144.

Tai, J., Rola, A., Margaret, B., David, B., Phillip, D., & and Jorre de St Jorre, T. (2023). Assessment for inclusion: rethinking contemporary strategies in assessment design. *Higher Education Research & Development*, 42(2), 483-497. <https://doi.org/10.1080/07294360.2022.2057451>

TEQSA. (2017a). *Guidance note: Academic quality assurance* Tertiary Education Quality and Standards Agency. <https://www.teqsa.gov.au/guides-resources/resources/guidance-notes/guidance-note-academic-quality-assurance>

TEQSA. (2017b). *Guidance note: Course design (including learning outcomes and assessment)* <https://www.teqsa.gov.au/guides-resources/resources/guidance-notes/guidance-note-course-design-including-learning-outcomes-and-assessment>

ASCILITE 2025

Future-Focused:

Educating in an Era of Continuous Change

TEQSA. (2023). *Guidance note: Academic governance* Tertiary Education Quality and Standards Agency.
<https://www.teqsa.gov.au/guides-resources/resources/guidance-notes/guidance-note-academic-governance>

Chase, A-M. (2025). Assessment by design: A classification framework for learning assurance in the age of GenAI. In Barker, S., Kelly, S., McInnes, R. & Dinmore, S. (Eds.), *Future Focussed. Educating in an era of continuous change*. Proceedings ASCILITE 2025. Adelaide (pp. 615-624).
<https://doi.org/10.65106/apubs.2025.2785>

Note: All published papers are refereed, having undergone a double-blind peer-review process.
The author(s) assign a Creative Commons by attribution license enabling others to distribute, remix, tweak, and build upon their work, even commercially, as long as credit is given to the author(s) for the original creation.

© Chase, A-M. 2025